Generative Bayesian Inference with GANs

Yuexi Wang YXWANG99QILLINOIS.EDU
Department of Statistics

University of Illinois Urbana-Champaign

Champaign, IL 61820, USA

Veronika Rockova VERONIKA.ROCKOVA@QCHICAGOBOOTH.EDU
Booth School of Business

University of Chicago

Chicago, IL 60637, USA

Abstract

In the absence of explicit or tractable likelihoods, Bayesians often resort to approximate
Bayesian computation (ABC) for inference. Our work bridges ABC with deep neural im-
plicit samplers based on generative adversarial networks (GANs) and adversarial variational
Bayes. Both ABC and GANs compare aspects of observed and fake data to simulate from
posteriors and likelihoods, respectively. We develop a Bayesian GAN (B-GAN) sampler
that directly targets the posterior by solving an adversarial optimization problem. B-GAN
is driven by a deterministic mapping learned on the ABC reference by conditional GANs.
Once the mapping has been trained, iid posterior samples are obtained by filtering noise at a
negligible additional cost. We propose two post-processing local refinements using (1) data-
driven proposals with importance reweighting, and (2) variational Bayes. We support our
findings with frequentist-Bayesian results, showing that the typical total variation distance
between the true and approximate posteriors converges to zero for certain neural network
generators and discriminators. Our findings on simulated data show highly competitive
performance relative to some of the most recent likelihood-free posterior simulators.
Keywords: Approximate Bayesian Computation, Generative Adversarial Networks, Im-
plicit Models, Likelihood-free Bayesian Inference, Variational Bayes

1 ABC and Beyond

For a practitioner, much of the value of the Bayesian inferential approach hinges on the
ability to compute the entire posterior distribution. Very often, it is easier to infer data-
generating probability distributions through simulator models rather than likelihood func-
tions. However, Bayesian computation with simulator models can be particularly grueling.

We assume that § € © C R? is a parameter controlling a simulator-based model that
gives rise to a data vector Xa(n) = (X1,...,Xp) ~ Pe(n) which is not necessarily iid. The
model may be provided by a probabilistic program that can be easily simulated but its
implicit likelihood pén) = (X |#) cannot be evaluated. For an unknown inferential target
0y € O, our goal is to approximate the post-data inferential density (i.e. the posterior)

(0] X5) o p§ (XS)m (0), (1)

where Xén) ~ PG(:’) denotes the observed data. We allow for the possibility that both the
likelihood pén)(-) and/or the prior 7(6) are analytically intractable but easy to draw from.

©2026 Yuexi Wang and Veronika Rockova.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

WANG AND ROCKOVA

Without the obligation to build a model, Approximate Bayesian Computation (ABC)
(Beaumont et al., 2002; Sisson et al., 2018) provides an approximation to the posterior (1)
by matching aspects of observed and fake data. This is accomplished via forward simulation

of the so-called ABC reference table {(6;, X J(n)) ;‘-F:l where 6;’s have been sampled from the

prior 7(6) and fake data X }n)’s have been sampled from the likelihood pg;)(-). In order to
keep only plausible parameter draws, this table is then filtered through an accept/reject
mechanism to weed out parameter values 6; for which the summary statistics of the fake
and observed data were too far. Our work, albeit not being an ABC method per-se, builds
off of recent ABC and simulation-based Bayesian inference innovations described below.
ABC Regression adjustment (Beaumont et al., 2002; Beaumont, 2003; Blum and Frangois,
2010) is a post-processing step that re-weights and re-adjusts the location of ;s gathered
by rejection ABC by fitting a (weighted) regression model of #;’s onto summary statistics

55 = S(X](n)). Such a model can be regarded as provisional density estimator of 7(# | X (™))

derived from s(X(™) under certain regression distributional assumptions. More flexible
conditional density estimators, such as neural mixture density networks (Papamakarios and
Murray, 2016; Lueckmann et al., 2017), have been successfully integrated into ABC without
the burden of choosing summary statistics. Our approach is related to these developments.
However, we do not attempt to learn a flexible parametric approximation to the posterior
(or the likelihood (Lueckmann et al., 2019; Papamakarios et al., 2019)). Instead, we find
an implicit neural sampler from an approximation to m(#| X(™) by training Generative
Adversarial Networks (Goodfellow et al., 2016) on the ABC reference table. GANs have
been originally conceived to simulate from complex likelihoods by contrasting observed and
fake data. ABC, on the other hand, contrasts observed and fake data to simulate from com-
plex posteriors. Bringing together these two approaches, we propose the B-GAN posterior
sampler, an incarnation of conditional GANs (Gauthier, 2014; Mirza and Osindero, 2014;
Athey et al., 2021; Zhou et al., 2022) for likelihood-free Bayesian simulation. By contrasting
the ABC reference table with a fake dataset under the same marginal distribution (X)),
B-GAN learns to simulate from an approximation to the conditional distribution 7 (8 | X (™).
Similarly as Papamakarios and Murray (2016) and Lueckmann et al. (2017), our method is
also global in the sense that it learns (0 | X)) for any X not necessarily Xén). More
perfected posterior reconstructions can be obtained with post-processing steps that zoom in
onto the posterior distribution evaluated at X((]n). We consider two such refinements based
on: (1) reinforcement learning with importance sampling, and (2) adversarial variational
Bayes. We describe each approach below.

Simple rejection ABC may require exceedingly many trials to obtain only a few ac-
cepted samples when the posterior 7(4 | X(gn)) is much narrower than the prior m(0) (see
e.g. Marjoram et al. (2003); Sisson et al. (2007); Beaumont et al. (2009)). This has mo-
tivated query-efficient ABC techniques which intelligently decide where to propose next
(see Jarvenpaa et al. (2020); Hennig and Schuler (2012) for decision-theoretic reasoning or
Jarvenpéa et al. (2019) and Gutmann and Corander (2016) for implementations based on
Bayesian optimization and surrogate models). Alternatively, Lueckmann et al. (2017) learn
a Bayesian mixture density network approximating the posterior over multiple rounds of
adaptively chosen simulations and use more flexible proposal distributions (not necessarily
the prior) with a built-in importance-reweighting scheme. A similar strategy was used in

GENERATIVE BAYESIAN INFERENCE WITH GANS

Papamakarios et al. (2019) who used a pilot run of mixture density networks to learn the
proposal distribution for the next round. Although X(gn) s not used in B-GAN training, it
can be used in the proposal inside the ABC reference table. Similarly as in Papamakarios
et al. (2019), we use Xén) to construct a flexible proposal (i.e. an empirical Bayes prior) and
convert the draws to posterior samples under the original prior by importance reweighting.
This 'reinforcement learning’ refinement substantially improves the reconstruction accuracy

and can be justified by theory.

Our vanilla B-GAN sampler uses contrastive learning (Gutmann et al., 2018; Durkan

et al., 2020) to estimate the conditional distribution 7(6 | X)) for any X (™. Since Xén) is
used only at the evaluation stage (not the training stage), we can custom-make the sampler

to Xén) by using the B-GAN output (or the output after reinforcement learning) as an
initialization for implicit variational Bayes optimization (Tran et al., 2017; Huszar, 2017).
Implicit variational Bayes attempts to approximate the posterior using densities which are
defined implicitly by a push-forward mapping. B-GAN also trains such a mapping but the
generator will have never seen observed data. At later stages of B-GAN training, we can
thereby modify the objective function for the generator so that it minimizes a lower bound
to the marginal likelihood. Since the likelihood cannot be evaluated, we use contrastive
learning inside the variational objective to compute the lower bound (Huszéar, 2017; Tran
et al., 2017). We consider the joint-contrastive form (Huszar, 2017; Durkan et al., 2020),
where the classifier is still trained to learn the joint likelihood ratio using the ABC reference
table (similarly as in B-GAN). However, the generator is now trained on Xén) by maximizing
the evidence lower bound. This algorithm is related to the B-GAN simulator, but uses X(()n)
during the training stage.

Contrastive learning has been used inside Bayesian likelihood-free sampling algorithms
before (see e.g. Wang et al. (2022); Gutmann et al. (2018); Kaji and Rockova (2022)).
Both Wang et al. (2022) and Kaji and Rockova (2022) assume iid data with a large enough
sample size n to be able to apply classification algorithms for each iteration of Metropolis
Hastings and ABC, respectively. Our approach does not require iid data and can flexiblely
accommodate almost any shape of data. We also do not require to run classification at each
posterior simulation step.

We show highly competitive performance of our methods (relative to state-of-the art
likelihood-free Bayesian methods) on several simulated examples. While conceptually re-
lated methodology has occurred before (Papamakarios and Murray, 2016; Lueckmann et al.,
2017; Ramesh et al., 2022), theory supporting these likelihood-free Bayesian approaches has
been lacking. We provide new frequentist-Bayesian theoretical results for the typical vari-
ational distance between the true and approximated posteriors. We analyze Wasserstein
versions of both the B-GAN algorithm as well as adversarial variational Bayes. With prop-
erly tuned neural networks, we show that this distance goes to zero as n — oo with large
enough ABC reference tables.

The outline of our paper is as follows. Section 2 reviews conditional GANs and intro-
duces the Bayesian GAN sampler together with the reinforcement adjustments. In Section 3,
we describe another local enhancement strategy inspired by implicit variational Bayes. In
Section 4, we investigate the theoretical guarantees of the B-GAN posteriors. The per-

WANG AND ROCKOVA

formance of our methods is illustrated on simulated datasets in Section 5 and a real data
application in Section 6. In Section 7, we conclude with a discussion.

2 Adversarial Bayes

Generative Adversarial Networks (GANs) (Goodfellow et al., 2016) are a game-theoretic
construct in artificial intelligence designed to simulate from likelihoods over complex objects.
GANSs involve two machines playing a game against one another. A Generator aims to
deceive a Discriminator by simulating fake samples that resemble observed data while, at
the same time, the Discriminator learns to tell the fake and real data apart. This process
iterates until the generated data are indistinguishable by the Discriminator and can be
regarded as genuine likelihood samples. Below, we review several recent GAN innovations
and propose an incarnation for simulation from a posterior as opposed to a likelihood.

2.1 Vanilla GANs

In its simplest form, GANs learn how to implicitly simulate from the likelihood pgg) ()

using only its realizations Xo(n) € X where X(gn) ~ p((;;) when 6y is unknown. Recall

that draws from implicit distributions can be obtained by passing a random noise vector
Z(¢ Z through a non-stochastic pushforward mapping g8(-) + Z — X. The original
GANSs formulation (Goodfellow et al., 2016) involves a Generator, specified by the mapping
ga(+), that attempts to generate samples similar to Xé") by filtering Z™, ie. ZM ~
my), X0 = g5(20) ~ pi.

The coefficients 3 in the Genrator are iteratively updated depending on the feedback
received from the Discriminator. The Discriminator, specified by a mapping d(-) : X —
(0,1), gauges similarity between X (") and Xén) with a discrepancy between their (empirical)
distributions. Hereafter we use X to denote a generic dataset as X € X for simplicity of
notation. At a population level, a standard way of comparing two distributions, say PQ(:)

and Pe(n), is with the symmetrical Jensen-Shannon divergence which can be written as a
solution to a particular optimization problem

JS(PH(”)7 9(:)) =In2+0.5x d:XSEI()O y {EXNP(") In [d(X)] + EXNPG(? In[l- d(X)]} . (2)

0
The optimal Discriminator d*(-), solving the optimization (2), is d*(X) = pgn) (X)/ [pén) (X)+
pgz) (X)] (Goodfellow et al., 2014, Proposition 1). The optimal Generator is then de-
fined through the optimal value B* which leaves the Discriminator maximally confused,
ie. d*(X) = 1/2 and therefore pgg) (X) = pén) (X) uniformly over X.
Despite the nice connection to likelihood ratios, original GANs (Goodfellow et al., 2014)
may suffer from training difficulties when the discriminator becomes too proficient early
on (Gulrajani et al., 2017; Arjovsky and Bottou, 2017). Alternative divergences have been
implemented inside GANs that are less prone to these issues. For example, the Wasserstein
distance (Arjovsky and Bottou, 2017) also admits a dual representation

dw (Pe(n),Pe(:)> = sup

E (X)) —F o (X 3
fefw\ o I = By () (3)

GENERATIVE BAYESIAN INFERENCE WITH GANS

where Fyy = {f : ||f|l, < 1} are functions with a Lipschitz semi-norm || f||, at most
one. The function f(-) is often referred to as the Critic. In our implementations, we will
concentrate on the Wasserstein version of GANs (Arjovsky et al., 2017).

2.2 Conditional GANs for Bayes

While originally intended for simulating from likelihoods underlying observed data, GANs
can be extended to simulating from distributions conditional on observed data. Certain
aspects of conditional GANs (cGANs) have been investigated earlier (Gauthier, 2014; Mirza
and Osindero, 2014) in various contexts including causal inference (Athey et al., 2021) or
non-parametric regression (Zhou et al., 2022). Our work situates conditional GANs firmly
within the context of ABC and likelihood-free posterior simulation. Before we describe
our development in Section 2.3, we first introduce the terminology of cGANs within a
Bayesian context. We will intentionally denote with X the conditioning variables and focus
on the conditional distribution 7(6| X) for the inferential parameter § € © with a prior
m(#). Similarly as with vanilla GANs in Section 2.1, cGANs again involve two adversaries
represented by two mappings. We focus on the Wasserstein version here. For readers that
are less familiar with GANs and ¢cGANs, we include the JS-based cGAN in Section A, which
is more intuitive but less stable in training.

Definition 1 (Generator) We define a deterministic generative model as a mapping g :
(Z x X) — © that filters noise random variables Z € Z to obtain samples from an implicit
conditional density wy(6| X). This conditional model then defines an implicit joint model

(X, 0) = my(0| X)m(X), where m1(X) = [o pén) (X)m(0)dO is the marginal likelihood.

Definition 2 (Critic) We define a deterministic critic model as a mapping f : (X x ©) —
R, which estimates the Wasserstein distance between the data pairs (X,0) from (X, 0) and
4(X,0).

The main distinguishing feature, compared to vanilla GANs, is that the conditioning
random vector X enters both mappings. The task is to flexibly parametrize gg(-), e.g. using
neural networks as will be seen later, in order to approximate the joint density model (X, 6)
as closely as possible. Ideally, we would like to recover an (oracle) function g* : Z x X — ©
such that the conditional distribution of ¢*(Z, X) given X is the same as m(6 | X). The
existence of such an oracle g* is encouraged by the noise-outsourcing lemma from probability
theory (Kallenberg, 2002; Zhou et al., 2022) which we reiterate as Lemma 9 in Section A
for Gaussian Z. Although it is not necessary for © and Z to be of the same dimension d, we
choose 7z = N (0, I;) to balance the expressiveness of the generator and the discriminator.

The premise of conditional GANs rests in the fact that matching two joint distributions,
while fixing a marginal distribution, is equivalent to matching conditional distributions.
This implies that ¢*(Z, X), given X, is indeed distributed according to 7(0| X). The
question remains how to find the oracle mapping ¢* in practice. In the Wasserstein cGAN,
the minimax game is characterized as

(4

(g, f") = arg I;lelél max ‘EXW(X),ZWZJC(X» 9(Z, X)) — Ep,x)~r(x,0f(X,0)

WANG AND ROCKOVA

where, using F = Fy (1-Lipschitz in), ¢* minimizes the Wasserstein distance between
(X, 0) and 7(X,0). When G and F are expressive enough, the minimum is achieved if and
only if the Wasserstein distance between 7y« (X, 0) and 7(X,0) is zero, which equivalently
means 7y (X,0) = w(X,0). With the same marginal 7(X), the solution g* essentially
satisfies mg« (0 | X) =m(6 | X).

2.3 Generative Bayesian Inference with GANs

To implement the adversarial game (4) in practice, one needs to (a) parametrize F and
G (for instance using neural networks) and (b) to replace the expectations in (4) with
empirical counterparts. Both of these steps will introduce approximation error. We provide
theoretical insights later in Section 4. We assume that the generator class G = {gg :
(Z x X) — O where B € R%} is parametrized with 3 and the critic class F = {f., :
(X x ©) — R where w € R} is parametrized with w. We use neural networks (with ReL.U
activations) and support this choice with theory (Corollary 6).

For the empirical version, one can use the ABC reference table which consists of simu-
lated data pairs {(6;, X](-")) j—1 generated from the joint model 7(X XM gy = p(gn)(X(n))ﬂ(Q)
under the prior 7(#). Specifically, we use n to refer the total data dimensionality. Each draw
X"

~ Pe(n) can be either n* iid g-dimensional observations, or g-dimensional times-series
of length n*, such that n = n* x ¢q. From now on, we will simply denote X](-n) with X,

similarly for X(()n) and X (),

We can break the relationship between 6 and X in the ABC reference table by contrast-
ing these data pairs with another dataset consisting of {(g(Z;, X;), X;)}; T, where Z;’s have
been sampled from 7z(-). Keeping the same X;’s essentially means that we are keeplng
the same marginal. The dataset {(g(Z;, X;), X;)}; T _; encapsulates iid draws from 74 (X,0).
These two datasets can be then used to approxunate the expectations in (22) and (4). A
high-level description of an algorithm for solving the Jensen-Shannon (JS) version of the
game from Lemma 10 is outlined in Algorithm 4 (Appendix Section D). As mentioned ear-
lier, the JS version may suffer from training issues (Arjovsky and Bottou, 2017). We provide
an illustration of such issues using convergence diagnostics on a toy example in Section D.

In our implementations, we thereby consider the empirical version of (4) which again

involves simulated datasets {(6;, X;) _; and {Z; } 1351 7mz(+) to obtain

T
-) X ,0 5
Br = arg Al | max ;fw j»98(Z 2:: ; (5)

One particular way of solving this problem is summarized in Algorithm 1. In terms of
the constraint on w to ensure the Lipschitz condition || fo ||z < 1, the original Wasserstein
GANSs implementation (Arjovsky and Bottou, 2017) used gradient clipping, which may lead
to computational issues. Alternatively, Gulrajani et al. (2017) imposed a soft version of the
constraint with a penalty on the gradient of f,, with respect to a convex combination of
the two contrasting datasets. We adopt the one-sided penalty same as Athey et al. (2021),
with details in Section E. To stabilize gradients, the critic is updated multiple times (ideally
until convergence) before each update of the generator, which is different from Algorithm 4
where such a stabilization may not be feasible (Arjovsky et al., 2017).

GENERATIVE BAYESIAN INFERENCE WITH GANS

Algorithm 1 Vanilla B-GAN

Prior 7(6), observed data X, and noise distribution m(-)

Initialize network parameters w®) =0 and B8¥ =0
Reference Table

Forj=1,...,T: Generate (X, 6;) where §; ~ m(0) and X; ~ Pe(;l).
Wasserstein GAN

Fort=1,...,N:
Critic Update (Nitic steps): For k= 1,..., Neitic
Generate Z; ~ mz(z) for j=1,...,T.
Update w® by applying stochastic gradient descent on (5).
Generator Update (single step)
Generate noise Z; ~ mz(z) for j=1,..., N.
Update ,B(t) by applying stochastic gradient descent on (5).

Fori=1,...,M: Simulate Z; ~ mz(z) and set 6; = gﬂw)(Zi,Xo).

Our GAN framework for Bayesian posterior simulation (i.e. Algorithm 1 further referred
to as B-GAN) consists of a neural sampler 95, (Z,X) which generates samples from an
approximate posterior, i.e. conditioning on the observed data Xg, by filtering iid noise as
follows N .

0; = gﬁT(Zj,XO) where Z; X my() for j=1,...,M. (6)

When 95, is close to g*, the samples §j will arrive approximately from 7(6 | Xp). One of the
practical appeals of this sampling procedure is that, once the generator has been trained,
the simulation cost is negligible. Note that our observed data Xg ~ p(gz) (X) are not involved
in the training stage, only in the simulation stage (6). We illustrate Algorithm 1 on a toy
example. The configurations of our B-GAN networks and optimization hyperparameters
are described in Section E.2. Note that our B-GAN approach is different from the Bayesian
GAN of Saatci and Wilson (2017), which places a probabilistic structure over the GAN
parameters and update the parameteters via sampling instead of pure optimization. Our
work utilizes the GAN framework for likelihood-free Bayesian inference and the training
scheme is optimization-based.

Example 1 (Toy Example) This toy example (analyzed earlier in (Papamakarios et al.,
2019)) exposes the fragility of ABC methods in a relatively simple setting. The exper-
iment entails n = 4 two-dimensional Gaussian observations X = (x1,2,x3,24)" with
zj ~ N(ug,Xo) parametrized by 6 = (61,02, 03, 04,9()’, where

2
o / _ 571 pPS152
e = (61,02) and g = psiss 2)

with s1 = 9%, 53 = 02 and p = tanh(05). The parameters 8 are endowed with a uniform prior
on [—3,3] x [—4,4] x [-3,3] x [-3,3] x [-3,3]. Approzimating the posterior can be tricky

WANG AND ROCKOVA

—

2 3 2 4 2 0 2 2 3 2 2 3 2
[IBcaNn — ss . w2 ? I sn [T Tt

Figure 1: The approximate d posteriors given by B-GAN, SNL, SS, and W2 for the toy example. The
results for 64 are similar to 83 and thus not shown here.

because the signs of parameters 03 and 04 are not identifiable, yielding multimodality. We
generate Xo with parameters 8y = (—0.7,—2.9,—1.0,—0.9,0.6)". Since we have access to
the true posterior, we can directly compare our posterior reconstructions with the truth. We
compare B-GAN with (1) ABC using naive summary statistics (SS) (mean and variance),
(2) 2-Wasserstein distance ABC' (Bernton et al., 2019), and (3) Sequential Neural Likelihood
(SNL) (Papamakarios et al., 2019) with the default setting suggested by the authors. We
provide all implementation details in Section E.2. For each method, we obtained M = 1000
samples and plotted them in Figure 1. Our B-GAN approach as well as SNL nicely capture
the multimodality. Although the B-GAN posterior quickly locates a neighborhood around
true wvalues 6y, its variance appears to be bigger than the true posterior, suggesting an
approximation gap. This is expected because B-GAN is trained to perform well on average
for any X, not necessarily for Xg. This motivates our two refinement strategies: one based
on active learning (Section 2.4) and one based on variational Bayes (Section 3).

Similarly as with default ABC techniques, our B-GAN approach is not query-efficient, i.e.
many prior guesses ¢; in the training dataset may be too far from the interesting areas with
a likelihood support leaving only a few observations to learn about the conditional (6| Xj).
The next section presents a two-step approach which uses X for proposal construction in
the ABC reference table to obtain more valuable data-points in the reference table.

2.4 Two-step Refinement

Our chief goal is to find a high-quality approximation to the conditional distribution 7 (6 | X)
evaluated at the observed data X = Xj, not necessarily uniformly over the entire domain
X. However, the ABC reference table {(6;, X j)}]T:1 may not contain enough data points X
in the vicinity of Xy to train the simulator when the prior 7(6) is too vague. This can be
remedied by generating a reference table using an auxiliary proposal distribution 7(6) which
is more likely to produce pseudo-observations X; that are closer to Xy. For example, a pilot
simulator 95, (Z,Xp) in (6) obtained from Algorithm 1 under the original prior 7(6) can be

8

GENERATIVE BAYESIAN INFERENCE WITH GANS

Algorithm 2 2-Step Refinement (B-GAN 2step)

Prior m(6), observed data Xy and noise distribution 7z(z)

Initialize network parameters w(® = 0 and 8 =0
Pilot Run

Apply Algorithm 1 with 7(0) to learn Gpoc(-)
Reference Table
Generate pairs {(X}, (9]')}?:1 where 0; = Gpitor(Z;, Xo) for Zj ~ mz and X; ~ Pe(?)~
Refinement

Apply Wasserstein GAN step in Algorithm 1 on {(Xj, Hj)}?zl and return gﬁT(~)

Posterior Simulation
Simulate {Z;}M, i 77(2) and set 6; = gET(Zi’XO)'
Estimate w; using either (7) or (8).

Pairs of posterior samples and weights (61, @1), ..., (Oar, Wnr)

used to guide simulations in the next round to sharpen the reconstruction accuracy around
Xo (Papamakarios and Murray, 2016). Training the generator §§T, simulating from an

approximation to 7(0 | Xo) o pg;“) (X0)7(0), under the ‘wrong’ prior can be corrected for by

importance re-weighting with weights (6) = 7(0)/7(0). Since the posterior 7(0 | Xo)r(0) is
proportional to m(6 | Xo), reweighting the resulting samples §j = ﬁﬁT(Z, Xé")) with weights
w; = r(#;) will produce samples from an approximation to the original posterior (after
normalization). Algorithm 2 summarizes this two-step strategy, referred to as B-GAN-2S.

Since the proposal density Tas. (0| Xo) obtained in the pilot run may not have an

analytical form, computing the importance weights w; = m(6;)/ o5 (65| Xo) directly may
T
not feasible. The density ratio r7(f) can be approximated, however. For example, with a
tractable prior 7(6) the importance weights w; can be estimated by
m(0;)

W= ——=L (7)
’ WQET (65| Xo)

where ﬁgﬁT (0| Xo) is a plugged-in kernel density estimator (KDE) estimator (Terrell and

Scott, 1992). This is particularly useful and efficient when the parameter dimension is
low. When the prior is also not tractable but simulatable, the weights w; can be directly
estimated from classification by contrasting datasets 6; ~ 7(6) (label ‘0’) and 6; ~ m(6)
(label ‘1°). In particular, training a classifier D (see e.g. Cranmer et al. (2015); Durkan et al.
(2020); Gutmann and Hyvérinen (2012) for the explanation of the ’likelihood-ratio-trick’
for classification based estimators), we can obtain

D(9;)

56 (®)

wj =

Papamakarios and Murray (2016) used mixture density networks estimators of the con-
ditional distribution 7(6| x) after a pilot run to learn the proposal distribution 7 (). In

WANG AND ROCKOVA

2 A 0 1 2 4 B 2 4 2 B 3 1 2 3 2 o 2
v B-GaN-vB [] B-GAN-2s [T Truth © | SNL

Figure 2: Posterior densities under the Gaussian model. The true parameter is 6y =
(—0.7,-2.9,—1.0,—0.9,0.6)’, while the signs of 03 and 64 are not identifiable.

order to obtain an analytically tractable Gaussian mixture representation, their proposal
7(0) has to be Gaussian and it cannot be narrower than any of the mixture components.
We do not require such assumptions. Lueckmann et al. (2019) instead propose to directly
incorporate the weights r(6) inside training and relax the Gaussianity assumption to avoid
the variance instability. Similarly as in Lueckmann et al. (2019), we could also incorporate
weights w; inside the objective function, e.g. multiplying each summand in (5) by ;.

In the two-step refinement, the observed data X only contribute to the proposal distri-
bution 7(f), not the training of the simulator ga() In Section 3, we consider a variational
Bayes variant which does involve Xj in training.

Example 2 (Toy Example Continued) We continue our exploration of the Toy Exam-
ple 1. We now use the output from B-GAN (Algorithm 1) under the original uniform prior

as a proposal distribution 7(0) and generate training data {(Xj,ﬁj)}?;l

with a marginal
T(X) = [y pén) (X)7(0)dh. To revert the generated posterior samples to the original uni-
form prior, we perform reweighting by r(0) = w(0)/7(0) using the kernel density estimator
of m(0) obtained from the pilot B-GAN run in Algorithm 1. The number of training points
used in the second step is T = 50000. We note that much smaller T could be used if
one were to perform more sequential refinements, not just one. The re-weighted (and nor-
malized) posterior is plotted against the truth, SNL and a variational Bayesian variant
(introduced later in Section 3) in Figure 2. Both B-GAN and B-GAN-2S provide tighter
approximations to the true posterior We repeated the experiment 10 times and report the
Mazimum Mean Discrepancies (MMD) (Gretton et al., 2012) between the true posterior and
its approximations obtained from M = 1000 posterior draws for each method in Figure 3.
Satisfyingly, B-GAN-2S yields the smallest MMD. We support this encouraging finding with
our theoretical results in Section 4.

10

GENERATIVE BAYESIAN INFERENCE WITH GANS

Iog(MMD)

B-GAN B-GAN-2S B-GAN-VB SNL ss w2

Figure 3: Maximum Mean Discrepancies (MMD, log scale) between the true posteriors and the approxi-
mated posteriors. The box-plots are computed from 10 repetitions.

2.5 The Case of i.i.d. Observations

In this subsection, we begin by reviewing three key challenges that arise when the total
data dimensionality n is large. We then demonstrate how these challenges can be mitigated
more effectively when the data consists of i.i.d. observations with large n* but moderate q.

The first challenge stems from the fact that a large n demands more complex and ex-
pressive neural networks, which are often harder to train and require generating even bigger
ABC reference tables. Second, as n* increases, the posterior becomes more concentrated,
making it difficult to efficiently identify high posterior density regions starting from a non-
informative prior. Lastly, the storage and memory requirements grow substantially when
simulating or processing the same number of ABC draws with larger n*.

The most straightforward and naive implementation is to flatten the n* x ¢ data matrix
into a vector and condition on the entire vector in our GAN sampler. However, this approach
inherits all three challenges and should be avoided when n = n* * ¢ is large. Instead, we
propose two alternative implementations tailored to i.i.d. datasets with large n*, which help
alleviate some of these computational burdens.

The first solution is to split the dataset into multiple batches, and use sequential update
to parse only one batch at a time. For example, for i.i.d. dataset with very large n*,
we partition the data into batches of size B, parse the data into vectors of size B X g,
then use the posterior from the previous batch as a prior for the next. This is coherent
with the Bayesian framework. The neural network can also be recycled from previous
batch, which should further relieve the computational burden. This can also be applied for
some dependent datasets, such as the Lotka-Volterra model, whose dependency is solely
determined by the observation from last timestamp. For this type of model, sequential
parsing is still valid with partition along the time horizon. For this solution, it helps with
second challenge and the third challenge, and can mildly relieve the first challenge. The
sequential update allows us to gradually approach the concentrated high posterior density
region and reduces the size of datasets that needs to be generated each time to be T'x B x ¢
instead of T * n* % ¢q. Since the length of the flatten data vector is lower than n* x ¢, it
requires less complex network structrues compared to the naive implementation, but this
can still quickly grow overwhelming when B also becomes really large.

11

WANG AND ROCKOVA

The second solution leverages the exchangeable nature of i.i.d. observations. For an ideal
parameter-efficient generator network, it should output the same conditional distribution
regardless of the order of exchangeable inputs. In another words, it should satisfy

98(Z,[X1, Xo, ..., Xu]) = 98(Z, [Xr(1), Xn2)s -+ s X))

where 7(-) can be any permutation. Similarly for the critic function, it should be able to
provide the same Wasserstein distance estimate under any permutation of the conditional
inputs.

For this parameter-efficient network, we adopt the deep set architecture from Zaheer
et al. (2017), whose output is invariant to the order of inputs. To accommodate for the
dependency between the parameter and each individual observation, we parametrize the
generator and critic networks as

95(2,[X1, Xa, ..., X)) = g (2, Zgé?(z, X))

fo(0. X1, Xo, .. X z 1200, %))

where gé), géQ), &), f},ﬁ) are sub-network structures inside the generator and critic functions.

These structures allow us to efficiently learn conditional distribution on an exchangeable
dataset without exploding network complexity.

We illustrate the efficiency of the three different implementations on the benchmark SBI
example, M/G/1-queuing model. We follow the setting in Fearnhead and Prangle (2011).
Each observation is a 5-dimensional vector consisting of the first five inter-departure times
x; = (41, Ti2, T3, Tig, Ti5) . In the model, the service times u;; follow a uniform distribution
Ulby,02], and the arrival times w;; are exponentially distributed with the rate 63. We only
observe the interdeparture times x;, given by the process x;; = u;; + max(0, Z;‘}:l Wij —
Z 1 :chj) We set true parameter to be 0y = (1,5,0.2) and the prior on (61,602 — 61,03) to
be uniform on [0, 10]? x [0, 0.5].

To show how different implementations scale with n, we show three examples with
n = 50,100, 200 in Figure 4. Here we consider three treatments: (1) deep set structure (deep
set), (2) sequential update by splitting n* observations into 5 batches (sequential), and (3)
stack all n observations into one long vector (stacked). To show how the performance of
these implementations vary with sample size n*, each implementation uses the same network
structure, i.e., same network complexity across different n*. Details of the implementations
are provided in Section E.3.

From Figure 4, we observe that for the deep set structure, the approximated posterior
for 65 and 03 gets more and more concentrated when n* increases, and the approximated
posterior covers the true values in all three n*, showing that using the parameter-efficient
network structure can scale better with n* for i.i.d. datasets. For the simple stacking
implementation, since the input dimension becomes 5n*, it suffers from all three challenges
we mention earlier. We observe that the network is able to give some rough approximation
when n* = 50 and n* = 100 but fails to learn when n* = 200. For the batch sequential
update, the input dimension is 5n*/5 = n*, so it is less affected by the growing sample size

12

GENERATIVE BAYESIAN INFERENCE WITH GANS

mtd [] deep set [sequential [] stacked
Thetal

2
PN
) 2N ~ ~ u_
p s 2 p s

0 0

Theta2

2 4 6 0 2 4
06
04
02
00 ; o L S
50 75 100 25 50 75 100 25 50 75 125

00 25 125 00 125 00 100

Theta3

»

»

10

. N LS L ~
o o 0z o o os

01 02 03 04 05 01 02 03 04

Figure 4: Posterior for M/G/1-queuing under different implementations of B-GAN

compared with the stacking implementation. Since the batch updates also help gradually
learning the high posterior density area, the batch update implementation produces the
most concentrated posterior for n* = 50 and n* = 100. However, it also fails to learn when
n* = 200. This could happen due to the cumulated errors in the batch update.

For the deep set structure, it largely circumvent the first challenge of exploding network
complexity and partially relieve the second challenge from incorporating the statistical
knowledge of exchangeability into the design. It cannot avoid the last challenge of growing
data size which could be overwhelming for users with limited storage or memory. We
recommend combing the deep set structure with the sequential update for extremely large
n to achieve maximum efficiency.

3 GAN Variational Bayes

Variational Bayes (VB) is an optimization-centric Bayesian inferential framework based
on minimizing a divergence between approximate and real posteriors. VB typically re-
duces the infinite-dimensional optimization problem to a finite-dimensional one by forcing
approximations into structured parametric forms. Implicit distributions (defined as proba-
bilistic programs) have the potential to yield finer and tighter VB posterior approximations
(Huszar, 2017; Kingma and Welling, 2013; Tran et al., 2017; Titsias and Ruiz, 2019). This
section highlights the connection between the implicit variational Bayes inference and our
B-GAN framework (Algorithm 1 and 2), both of which target the posterior.

The VB setup consists of an (intractable) likelihood pén)('), prior 7(#) and a class of

posterior approximations gg(6 | Xo) indexed by 3. We are recycling the notation of 3 here to
highlight the connection between the GAN generator and the implicit variational generator.
The goal of the VB approach is to find a set of parameters 8* that maximize the evidence

13

WANG AND ROCKOVA

lower bound (ELBO) to the marginal likelihood

log 7(Xo) > L(3 /1 ()e(‘o’X))>q,3(0|Xo)d9. (9)

The tightness of the inequality (for the best approximating model within the class) increases
with expressiveness of the inference model ¢g(-), where the equality occurs when gg(6 | Xo) =
(0| Xo). Writing the ELBO L(8) = —KL (¢g(| Xo)||w(8 | Xo))+ C in terms of Kullback-
Leibler discrepancy, we have

X : (0 | Xo)
B = arg mgx L(B) = arg min Egqs01x0) 108 (q,B(HXo) (10)
We estimate this expectation using K Monte Carlo draws 65, ~ ¢3(8 | Xo),k=1,..., K,
yielding the empirical objective

Byp = argngn;(Z)log <;;(9k | Xo)) (11)

b (8] X0 (0r | Xo)

where gg(0 | Xo) is generated implicitly via Zj ~ 7z and 0, = g(Zj, Xo).

However, contrary to conventional VB algorithms, we cannot directly evaluate (11) since
neither gg(6 | Xo) nor (6 | Xo) are tractable. To address this, we leverage contrastive learn-
ing (Bickel et al., 2007) to estimate the density ratio between two implicit distributions.
Here we first show how the loss function in (11) can be re-written with density ratio esti-
mator, and then we delve into details on how we actually implement that due to training
stability concerns.

Recall the “oracle classifier” dy 5 in Theorem 10, we have

dg,(X,0) 7(X,0)
1—dy (X,0) qp(0] X)m(X)’

which allows us to re-write the VB loss in (11) as

; N S
Bve = arg min o ;bglt(dgﬁ (Xo,0k))- (12)

Since the “oracle classifier” d a is unavilable, it has to be estimated by solving a classification
problem using a particular class of classifiers D = {dg : (X x Q) — (0,1);¢ € R}, for
instance, neural networks parameterized by ¢. This adversarial idea — replacing components
of the ELBO with learned discriminators — has been explored in earlier works (Mescheder
et al., 2017; Huszéar, 2017; Tran et al., 2017), typically for latent variable models. Here,
instead of performing maximum likelihood estimation (Mescheder et al., 2017), we focus
purely on VB inference with approximate posteriors gg(6 | Xo) when 6 is assigned a prior.

While (12) provides a clear and elegant formulation, it encounters two training chal-
lenges: (1) classifier estimation when 6y is unknown, and (2) instability under KL loss. To
tackle these issues, we make two modifications: (1) we use the VB loss as a regularization

14

GENERATIVE BAYESIAN INFERENCE WITH GANS

term, and (2) we replace the discriminator function with the critic function. We elaborate
the details below.

To address (1), note that we cannot train a classifier using the pair {6y, Xo} and
{98(Z, Xo), Xo} since 0y is unknown. Instead, we train dy(X,6) on samples from the joint
(X, 0) versus ¢gg(f | X)n(X), and then plug in Xy as the condition variable. This gives
rises to an adversarial game: the Generator gg(Z, X) maximizes the ELBO conditioned
on X, and the Discriminator dg(X,0) distinguishes between true and generated joint dis-
tributions. However, such training schedule makes it challenging to maintain the balance
between the generator network and the discriminator network, which is extremely intricate
for GAN training. When the generator is learning locally and the critic function is learning
globally, the balance is easily broken when the generator misbehaves away from the vicinity
of Xo.

We resolve this issue by incorporating the ELBO a regularization term in addition to the
original adversarial loss, which encourages the generator improves locally near Xy. Basically
the training alternates between updating the discriminator to maximizing the GAN loss and
updating the generator to minimize the {GAN loss +A\-ELBO loss}, where A\ controls the
strength of the regularization.

To address (2), i.e., KL.-based training instability, we consider a different Wasserstein
formulation motivated by our theoretical results in Theorem 1. Our first term associated
with the total variation bound

I m(-[X)
A1(F,Q) = Ew:}}gfef logw — fu(X,)H

suggests that the critic function f, (X,) also approximates the log-likelihood ratio log %
Br

This allows us to rewrite the ELBO term in (12) as

o= X folXob) (13)

0:=95(Zi,Xo0)

where f; is a trained critic approximating the log-density ratio, based on samples from joint
distributions 7(X,) and ¢g(6 | X)m(X).

Putting it all together, we present the VB-regularized WGANSs training procedure. We
initialize the generator and critic networks at 8(9) and w(® and generate the ABC reference

table {(6;, X;) ?:1 Y (0, X) with {Zj}]T:]L o 7z(+). Then, for the ¢-th iteration, update

T T
wlt) = argw%}a?fz Fu(Xjy 950 (Z5, X)) = D fu(Xj,0)
Hu€F = j=1

T T+K
p = arg ﬂm“ggZ Fuo (X5, 95(Z5 X)) 42+ 3 fuw (X0, 95(25, Xo)) (14)
IS =1 j=T+1
GAN Loss approx VB loss in (13)

This formulation effectively balances global learning from simulated datasets with local
adaptation to the observed data X, offering advantages over purely adversarial schemes

15

WANG AND ROCKOVA

Algorithm 3 GAN Variational Bayes (Wasserstein Version)

Prior 7(6), observed data Xy and noise distribution mz(z)

Initialize network parameters w(® =0 and g8 =0
Pilot Run
Apply Algorithm 1 with 7(0) to learn Gpioe(-)
Reference Table
Generate pairs {(Xj, Gj)}jrzl where 8 = Gpiot(Z;, Xo) for Zj ~ w7 and X ~ Po(:b).
WGAN Training '
Fort=1,...,N:
Critic Update (Neitic steps): Same as in Critic Update of Algorithm 1
Generator Update (single step)
Generate noise Z; ~ mz(z) for j =1,...,N.
Update 8% by applying stochastic gradient descent on (14).
Posterior Simulation
Simulate {Z;}M, iid mz(z) and set 0; = gﬁuv)(Zi,Xo).
Estimate w; using either (7) or (8).

Pairs of posterior samples and weights (01, %1), ..., (0a, War)

such as Algorithm 1, which ignore X, altogether. Another perspective on (14) is that it
can also be viewed as a weighted loss between simulated datasets { X} }}1:1 and the observed
dataset Xg. We would thereby expect this version to work better than Algorithm 1 which
does not use Xy at all.

Indeed, on the toy simulated example in Example 2 we can see that the VB variant pro-
duces tighter reconstructions relative to the B-GAN approach. The performance, however,
is not uniformly better than Algorithm 2. We provide a snapshot from another repetition in
Figure 9 (Section C), where the spikiness of B-GAN-VB (especially obvious when estimat-
ing 62) may explain why the MMDs between B-GAN-VB and the true posteriors are larger
than for B-GAN-2S in Figure 3. The algorithm is described in Algorithm 3. There are also
other variants of adversarial VB using the classification-based KL loss or the Wasserstein
loss Mescheder et al. (2017); Huszar (2017), but we have found that they are less stable to
train and thus exclude them from the comparisons.

4 Theory

The purpose of this section is to provide theoretical solidification for the implicit posterior
simulators in Algorithm 1, 2 and 3. We will quantify the typical (squared) total variation
(TV) distance between the actual posterior and its approximation and illustrate that with
carefully chosen neural generators and discriminators, the expected total variation distance
vanishes as n — co. We will continue denoting X ™ simply by X.

16

GENERATIVE BAYESIAN INFERENCE WITH GANS

We define with v = Pe(n) ® II the joint measure on X x © with a density 7(X,0) =

pén) (X)m(0). The goal is to approximate this measure with p, defined semi-implicitly
through a density function 7,(X,0) = 7(X)my(6| X) where 7(X) = [7(X,0)df is the
marginal likelihood and where the samples from the density my(f| X) are obtained by
the Generator in Definition 1. Thus, by keeping the marginal distribution the same, the
distribution m4(6 | X) is ultimately approximating the conditional distribution (6 | X). The
quality of the approximation will be gauged under the integral probability metric! (IPM)

(i) = $Up | Ex o)y (X, 0) = Ex oy (X,0) (15)
€

where F is a class of evaluation metrics (such as Lipschitz-1 functions that yield the

Wasserstein-1). The IPM metric (15), due to shared marginals of the two distributions,

satisfies

d]"(“!}?”) SEXdJ:(MQ(X)vV(X))a (16)

where p4(X) and v(X) denote the conditional measures with densities m,(6 | X) and 7(0 | X).
At the population level, the B-GAN (Algorithm 1) minimax game finds an equilibrium

* = mind v),
g 7€ .7:(“97)

where G is a class of generating functions (that underlie the implicit distribution pg).

Typically, both F and G would be parameterized by neural networks with the hope that
the discriminator networks can closely approximate the metric dz and that the generator
networks can flexibly represent distributions. In practice, one would obtain a data-driven
estimator based on the empirical distribution p of (65, X;) for 1 < j < T and the empirical
distribution fi4 of (¢(Z;, X;), X;) where Z; ~ w7 for 1 < j < T. Assuming that G = {gg :
B e RG}, the B-GAN estimator can be written as

o~

Br e argﬁgﬁiggw{%ngIEggfw(X,gﬁ(Z, X)) = Evp fu(X,0)]. (17)

For brevity, we will often denote the generator density my,(-) (see Definition 1) simply by
7g(-) and similarly for Hgg- The next Theorem provides an upper bound on the typical total
variation (TV) distance between true and the approximated posterior measures v(Xp) and
13, (Xo) with densities 7(6 | Xo) and 7T§T(9 | Xo), respectively. The total variation distance
can be upper bounded by three terms: (1) the ability of the critic to tell the true model
apart from the approximating model

7(-] X)
w5 (1%)

(2) the ability of the generator to approximate the average true posterior

a1 X)[1"
L

A1(F,G)=E inf

w:fwe]:

log

o0

AQ(g)E inf [EX log

B:g3€G

1. The absolute value can be removed due to the Monge-Rubinstein dual (Villani, 2008).

17

WANG AND ROCKOVA

and (3) the complexity of the (generating and) critic function classes measured the pseudo-
dimension Pdim(-) and defined in Definition 2 in Bartlett et al. (2017). Intuitively, pseudo
dimension is the maximum number of points you can assign arbitrary real values to and
still be able to fit them exactly using functions from the hypothesis space. For example, if
the hypothesis space is the set of all linear functions, its pseudo dimension is 2, since you
can fit exactly 2 arbitrary points (with real-valued outputs), but no more than that, with
a single linear function.

Note that the L norm in both (18) and (19) are both taken with respect to 6.
We use - in place of to avoid ambiguity. We denote with H = {hy,g : howg(Z,X) =
fw(98(Z,X),X)} a structured composition of networks f,, € F and gg € G.

Theorem 1 Let Br be as in (17) where F = {f : ||f]loc < B} for some B > 0. Denote

with E the expectation with respect to empirical measure on {(6;, X;) ;F:l and {Zj}?zl in
the reference table. Assume that the prior satisfies

I1[B,,(0y; €)] > e~ for some Cy > 0 and € > 0, (20)
where the KL neighborhood By, (0o;€) is defined as
Bu(Bo;¢) = {0 € © : KL(PY" || () < ne?, Voo (Py”, PY") < ne?}. (21)
Then for T > Pdim(F)V Pdim(H) we have for any C' >0
FYEd3y, (v(Xo). 5, (X0)) < CL(e.C),

where, for some C > 0 and Pmax = Pdim(F) V Pdim(H),

1 e(1H+C2tC)ne® B A(G) ~ logT x Pmax
T . 2 g
C, (e,C) = o T : 2A1(F,G) + — +4C B 7 .

Proof Section B.1

Remark 3 Zhou et al. (2022) provided theoretical results for the total variation distance be-
tween joint distributions using the Jensen-Shannon version of conditional GANs. Contrast-
ingly, we provide frequentist-Bayesian results, quantifying the typical squared total variation
distance between the true and approximate posteriors after integrating over the data gener-
ating process. In addition, we use the Wasserstein GANs, building on oracle inequalities
established in Liang (2021).

Interestingly, while the GAN approach is trained without the knowledge of Xy, Theorem
1 obtains a finite-sample (fixed n and d) upper bound for the typical TV distance after
plugging Xy into the sampler. This frequentist result has required the prior concentration
condition (20) which could be avoided if we were willing to assume bounded likelihood ratios
(Kaji and Rockovd, 2022) or uniform estimation error (Frazier et al., 2024). With bounded
likelihood ratios, we would then also not have the first term and the exponential multiplier
in the bound.

18

GENERATIVE BAYESIAN INFERENCE WITH GANS

From (16), it can be seen that Algorithm 1 targets a lower bound to the average Wasser-
stein distance between the posterior 7(6| X) and m4(0 | X') after marginalizing over m(X).
In other words, Algorithm 1 is not necessarily targeting (6 | Xo). The 2-step enhancement
in Algorithm 2 provides more data draws in the ABC table that more closely resemble Xj.
Theorem 1 applies to Algorithm 2 as well with slight modifications.

Corollary 4 (2step B-GAN) Assume that ,@T in (17) is learned under the proposal distri-
bution 7(0) and denote with E the expectation of the reference table under 7(0). Assume that
the original prior w(0) satisfies (20). Then the importance re-weighted posterior reconstruc-
tion from Algorithm 2 satisfies the statement in Theorem 1 with E replaced by E and with

~ 1/2 ~ ~
= (0] X) — ; m(6) m(0] X)
Asx(G) = ﬁlgfeg {fx Hlog GapS) H dX] and Ay (F,G) = Ew:lfgfeFH;(ﬁ log 7, 01X fw(X,H)H

oo

Proof Section B.2

The (nonasymptotic) bounds for the typical TV distance in Theorem 1 and Corollary
4 are not refined enough to fully appreciate the benefits of the 2-step enhancement. In
Remark 11 in Appendix (Section B.3), we provide an intuitive explanation for why the
2-step refinement version works so well in practice on each particular realization of Xy (not
only on average over many realizations X). We also provide a version of Theorem 1 for
adversarial variational Bayes (Algorithm 3) in Theorem 2 (Section B.5).

Theorem 1 provides intuition for how the quality of the generator and discriminator
networks affects the total variation distance. It also suggests how large 7" should be (relative
to n and d) to assure that the average squared TV distance is arbitrarily small (vanishing
with n). Recall that the training data size 1" can be chosen by the user. In Remark 7 below,
we will focus on specific deep learning architectures and provide a condition for choosing T
such that the upper bound in Theorem 1 is o(1) as 7' — oo for a suitable choice of € and C'
(potentially depending on n) and for n, d fixed. Instead of fixing n and allowing 7" to grow, in
Corollary 6 we fix T (as a function of n) and allow n to grow and show that the upper bound
is o(1) as n — oco. We use the ReLU activation function oger(x) = max{z,0} for both the
critic and generator networks, which have good approximation properties (Schmidt-Hieber,
2020).

Definition 5 We denote with FE(S,W) a class of feed-forward ReLU neural networks
f with depth L (i.e. the number of hidden layers plus one), width W and size S (total
number of parameters in the network) such that || f|lcoc < B. The width is defined as W =
max{wo,...,wr} where w; is the width of the 1™ layer with wqy the input data dimension
and wy, the output dimension. With QE(S, W), we denote the leaky ReLU neural networks
with the same meaning of parameters.

The following Corollary warrants optimism when using neural networks for the generator
and the discriminator. We formulate the Corollary in context of Algorithm 1 and note that
a similar conclusion holds for Algorithm 2 as well. This Corollary shows that there exist
deep learning architectures such that for large enough 7' (depending on n), the typical
squared TV distance vanishes as n — oo.

Corollary 6 Assume that the joint distribution w(0,X) is realizable in the sense that there
exists gg, € QES(SO,WO) such that m(0, X) = mg, (0, X). Assume that GBI (S*, W*) C

19

WANG AND ROCKOVA

Gfg (S0, Wo) is a class of leaky ReLU generative networks indexed by B where ||Bolloo V
18llcc < b for some b > 0. Assume that F = FP(S,W) are ReLU discriminator net-
works and mz is uniform on [0,1]%. Assume the prior concentration (20) is satisfied with
€n > 0 such that €, = O(1/\/n). For each arbitrarily slowly increasing sequence Cp,

there exists L,S,W > 0 and training data size T (depending on n) such that we have
Pg(:)Ed%V (V(Xo),MET (X[))) =o0(1) as n — oo for d fized.

Proof Section B.4 in the Appendix.

Remark 7 Using the same architecture as in Corollary 6, given n and d we can find the
smallest € such that the prior concentration is satisfied. Choosing 1/C = o(1) as T — oo
such that e©/(log T x Pmax)/T = o(1) will yield an upper bound CL (e, C) that is o(1) as
T — oo for fixed n and d.

5 Performance Evaluation

This section demonstrates very promising performance of our B-GAN approaches in Al-
gorithm 1 (B-GAN), Algorithm 2 (B-GAN-2S) and Algorithm 3 (B-GAN-VB) and on
simulated examples relative to other Bayesian likelihood-free methods (plain ABC using
summary statistics (SS); 2-Wasserstein distance ABC by Bernton et al. (2019); Sequential
Neural Likelihood (SNL) (Papamakarios et al., 2019) with default settings). SNL (Papa-
makarios et al., 2019) employs autoregressive flow to estimate the likelihood function from
simulated ABC reference table. The implementation details of our methods and the coun-
terparts are described in Section E.4 for the Lotka-Volterra model and Section E.5 for the
Boom-and-Bust model.

We evaluate the performance of different approximated posteriors in terms of three met-
rics: bias E ‘0} — Hi’, width of the 95% credible intervals and its coverage and the Posterior

Mass Concentration (PMC) in a small § neighborhood of the true values 8. PMC is defined
coordinate-wise as P(6; € (6 j—0;,80+0;)) for every j = 1,...,d. PMC incorporates both
bias and variance of the posterior approximation, and it is also helpful in understanding
how much uncertainty has reduced compared to the prior. Since the examples we consider
here all use uniform priors, we choose 6; to be 5% of the width of those uniform priors to
visualize how much uncertainty has reduced after observing Xj.

5.1 Lotka-Volterra Model

The Lotka-Volterra (LV) predator-prey model (Wilkinson, 2018) is one of the classical
likelihood-free examples and describes population evolutions in ecosystems where predators
interact with prey. The state of the population is prescribed deterministically via a system
of ordinary differential equations (ODESs). Inference for such models is challenging because
the transition density is intractable. However, simulation from the model is possible, which
makes it a natural candidate for simulator-based inference methods.

The model monitors population sizes of predators z; and prey y; over time ¢t. The
changes in states are determined by four parameters @ = (61, ...,64) controlling: (1) the
rate r{ = 012y, of a predator being born; (2) the rate 75 = oz of a predator dying; (3) the
rate r§ = O3y, of a prey being born; (4) the rate r§ = 6,24y, of a prey dying. Given the initial

20

GENERATIVE BAYESIAN INFERENCE WITH GANS

600 500

400

400 300

200
200

100

0
0.00 0.01 0.02 0.03 0.00 0.25 0.50 0.75 1.00 0.0 05 1.0 15 2.0 0.00 001 002 003 004 0.05

[JeceaN — ss. ‘w2 |sN []B-GAN-2S

800
500

I 400

300

600

400
200

200
100

0
0.006 0.008 0.010 0.012 0.014 0.3 04 05 0.6 07 04 0.6 0.8 1.0 1.2 0.006 0.009 0.012 0.015

v 1 B-Gan-vB [B-GAN-28

Figure 5: Approximate posterior densities under the Lotka-Volterra Model. The true parameter
vector (marked by vertical lines) is 8y = (0.01,0.5,1,0.01)".

population sizes (zo,yo) at time ¢ = 0, the dynamics can be simulated using the Gillespie
algorithm (Gillespie, 1977), which is a stochastic discrete-time Markov chain model. The
algorithm samples times to an event from an exponential distribution (with a rate 2?21 7';)
and picks one of the four reactions with probabilities proportional to their individual rates
7';.. We use the same setup as Kaji and Rockova (2022) where each simulation is started at
xo = 50 and yo = 100 and state observations are recorded every 0.1 time units for a period
of 20 time units, resulting in a series of 201 observations each.

The real data Xy are generated with true values 6y = (0.01,0.5,1,0.01). The data
vector X is stretched into one (201 x 2 x n*) vector, where n* is number of i.i.d. copies
of time-series observations. The advantage of our approach is that it can be used even
for n* = 1 when other methods (such as Kaji and Rockova (2022)) cannot. We focus on
the n* = 1 case here. We use an informative prior § € U(Z) with a restricted domain
= =[0,0.1] x [0,1] x [0,2] x [0,0.1] to make it easier for classical ABC methods (see Kaji
and Rockovéd (2022)) and to make the GAN training more efficient. Previous analyses
(Papamakarios and Murray, 2016) suggested summary statistics as the mean, log-variance,
autocorrelation (at lag 1 and 2) of each series as well as their correlation. Papamakarios et al.
(2019) also built their sequential neural network on top of this set of summary statistics.
We also build our model on the summary statistics, since it performs better than using
the time series empirically. This example is quite challenging due to the spikiness of the
likelihood in very narrow areas of the parameter space (as explained in Kaji and Rockova
(2022)).

A typical snapshot (for one particular data realization) of the approximated posteriors
is given in Figure 5 and the summary statistics averaged over 10 repetitions are reported
in Table 1. Since we do not have access to the true posterior, we look at the width of

21

WANG AND ROCKOVA

| B-GAN B-GAN-RL B-GAN-VB SNL SS W2
Bias 0.30 0.08 0.08 011 096 1.10

6, =0.01 CI 134 028(0.9) 0.25(0.9) 044 3.80 4.02(0.9)
PMC 0.82 1.00 1.00 1.00 040 038
Bias 0.91 0.46 0.43 045 249 242
=05 CI 0.40 0.18 0.14 017 091 0.84
PMC 0.33 0.62 0.64 0.64 010 0.10
Bias 0.22 0.12 0.13 013 049 047
03 =1 Clwidth | 0.77 0.41 0.41 048 1.76 1.73
PMC 0.27 0.48 0.48 047 011 0.1
Bias 0.29 0.12 0.12 0.15 0.68 0.79
64 =0.01 CIwidth | 1.29 0.38 0.35 052 272 2.82
PMC 0.83 0.99 0.99 0.98 051 0.42

Table 1: Summary statistics of the approximated posteriors under the Lotka-Volterra model (averaged
over 10 repetitions). Bold fonts mark the best model of each column. The coverage of the 95%
credible intervals are 1 unless otherwise noted in the parentheses.

the 95% credible interval, its coverage (proportion of the 10 replications such that the true
value is inside the credible interval), bias of the posterior mean and the posterior mass
concentration. Again, we observe that B-GAN-2S and B-GAN-VB outperforms B-GAN
with smaller biases, tighter variances and higher probability mass concentrated near 6y. In
Figure 5, B-GAN-VB appears to have smaller bias than B-GAN-2S when estimating all
parameters and also consistently outperforms SNL. The computation cost requirements are
compared in Section E.7.

5.2 Simple Recruitment, Boom and Bust

Our second demonstration is on the simple recruitment, boom and bust model (Fasiolo
et al., 2018). The model is prescribed by a discrete stochastic process, characterizing the
fluctuation of the population size of a certain group over time. Given the population size
Ny and parameter 8 = (1, k, a, §)’, the population size at the next timestep Ny follows
the following distribution
N Poisson(Ny(1+ 7)) + &, if Ny <k
e+ ™ BinOHl(Nt,OL) + €, it Ny >k’
where €, ~ Pois(3) is a stochastic arrival process, with rate 8 > 0. The population grows
stochastically at rate r > 0, but it crashes if the carrying capacity « is exceeded. The
survival probability o € (0, 1) determines the severity of the crash. Over time the population
fluctuates between high and low population sizes for several cycles.
This model has been shown to be extra challenging for both synthetic likelihood (SL)
methods and ABC methods in Fasiolo et al. (2018). The distribution of the statistics is far
from normal which breaks the normality assumption of SL. In addition, the authors show

that ABC methods require exceedingly low tolerances and low acceptance rates to achieve
satisfying accuracy.

22

GENERATIVE BAYESIAN INFERENCE WITH GANS

We first run the simulation study using the setup in An et al. (2020). The real data
Xp is generated using parameters r = 0.4,k = 50, = 0.09 and g = 0.05, and the prior
distribution is uniform on [0, 1] x [10,80] x [0, 1] x [0, 1]. The observed data has 250 time-
steps, with 50 burn-in steps to remove the transient phase of the process.

Previous analyses of the model suggested various summary statistics, including the
mean, variance, skewness, kurtosis of the data, lag 1 differences, and lag 1 ratios (An et al.,
2020). We use them in SS and SNL methods. We have explored three types of input:
the time series itself, the time series in conjunction with their summary statistics, and the
summary statistics only. We find that the network built on the summary statistics appears
to perform the best, thus we only include the results from this network here.

! 388
il o\

L B\ - il /
BIAMMA A b | IR NN, il s == - = f \

B-GAN || B-GAN-2S |_] B-GAN-VB | I SNL (1SS " w2

Figure 6: Approximate posterior densities under the Boom-and-Bust Model. The true parameter
is 8y = (0.4, 50,0.09,0.05)".

We include SS, W2, SNL as competitors for comparisons. One snapshot of the approx-
imate posterior densities is provided in Figure 6. We report the performance summary
averaged over 10 repetitions in Table 2. ABC methods struggle to identify the parameters
and provide very flat posteriors. The vanilla B-GAN is able to identify the correct location
of parameters but with rather wide credible intervals. We observe great improvements after
applying either the 2-step refinements or the VB refinements. For this example, B-GAN-
VB performs the best in estimating r and 5, while B-GAN-RL approximates better and
SNL estimates « slighly better than B-GAN-VB. The BnB model is more challenging to
learn, compared with the LV model. Potentially the performance of two refinements can be
further improved if we add more sequential refinement steps with fewer training epoches to
gradually modify the proposal distribution.

6 Empirical Analysis: the Susceptible-Infected-Recovered (SIR) epidemic
model with application to the common cold data

In this section, we illustrate our approach on the problem of estimating the three-parameter
Susceptible-Infected-Recovered (SIR) epidemic model and apply our methods to the 21-day
common-cold outbreak data in Tristan da Cunha island from October 1967 (Hammond &
Tyrrell (1971); Shibli et al. (1971)). We provide the data in Table 3, which tracks the
number of infected and recovered individuals.

The SIR model categorizes hosts into three statuses at time t. Individuals are considered
susceptible (S), if they are able to be infected by the pathogen, infected (I) if currently

23

WANG AND ROCKOVA

| B-GAN B-GAN-RL B-GAN-VB SNL SS W2
Bias (x1071) 0.44 0.26 0.24 0.24 216 2.59
r=04 CIwidth (x107!) | 1.65 081(0.9) 0.76 (0.9) 093 826 9.49
PMC 0.63 0.88 0.91 090 008 0.09
Bias 3.03 1.42 1.56 152 10.60 10.16
k=50 CI width 11.00 4.33 (0.9) 5.09 537 3717 43.20
PMC 0.66 0.96 0.94 094 022 019
Bias (x1072) 2.92 1.29 1.05 1.01 15.08 5.46
a=01 CIwidth (x107%) | 137 0.50 0.39 0.38 9.18 2.77
PMC 0.83 1.00 1.00 1.00 031 0.55
Bias (x107!) 1.20 0.96 1.01 128 441 3.92

8 =10.05 CIwidth 0.39 (0.9) 024 (0.7) 0.23 (0.8) 0.39 (0.9) 0.95 0.86 (0.5)
PMC 0.44 0.54 0.54 052 011 0.12

Table 2: Summary statistics of the approximated posteriors under the Boom-and-Bust model (averaged
over 10 repetitions). Bold fonts mark the best model of each column. The coverage of the 95%
credible intervals are 1 unless otherwise noted in the parentheses.

Day ‘ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5
Infected 113 7 6 10 13 13 14 14 17 10 6 6 4 3 1 1 1 1 0
Recovered |0 0 0 O 5 7 8 13 13 16 16 24 30 31 33 34 36 36 36 36 37

Table 3: Common cold outbreak data in Tristan da Cunha island (1967).

infected with the pathogen or recovered (R) if they have successfully cleared the pathogen.
SIR models and their variants, in both deterministic and stochastic forms, are among the
most fundamental epidemiological models and have found use describing diseases as diverse
as influenza, herpes and malaria. We adopt the Model (3.12) in Toni et al. (2009), which
has the highest probability, to describe the dynamics. This model introduces a latent state
where individuals are infected but not yet infectious, to account for the delay between
infection and the ability to infect others.

The deterministic SIR model without demographics can be written mathematically as

ds(t)

S =8I0,

dL(t)
Cdt

= a1se) oo, T —sne) —arw), D~ 1),
where S(t), L(t), I(t), R(t) are the numbers of susceptible, latent, infected and recovered
individuals in the population at time ¢ (days), and ¢ is the rate at which latent individuals
become infectious. The parameter § is the transmission rate, and ~ is the recovery rate.

Similar to the Lotka-Volterra model, we use stochastic discrete-time Markov chain to
simulate the dynamics. The model is governed by four parameters § = (3,,6,5(0)),
where S(0) is the number of susceptible individuals at week 0. Since the data in Table 3
only collected the number of infected and recovered individuals, the number of susceptible
individuals is not directly observed and thus S(0) needs to be estimated.

Following the setting in Toni et al. (2009), we place a prior on the parameters 6 as S(0) ~
U[37,100],8 ~ UJ0,3],v ~ U[0,3],0 ~ Unif[0,5]. We include the plot of approximated
posterior in Figure 7. For 5 and S(0), the posterior seems to be unimodal, similar to the

24

GENERATIVE BAYESIAN INFERENCE WITH GANS

findings in Toni et al. (2009), and B-GAN-VB provides the tightest credible intervals. The
posterior of v and § appears to be multimodal, which makes the inference more challenging
and the posterior we obtain here is more dispersed than that in Toni et al. (2009).

mtd [_] B-GAN [] B-GAN-RL [] B-GAN-VB

20
3
03
04
15
22
B 02
c
[} 1.0
©
02
1 041
05
4 00 00 00
30 40 50 60

Figure 7: Approximated posterior densities under the SIR model.

To further investigate the quality of the approximated posteriors, we examine the pre-
dictive performance of the fitted models. We simulate 100 datasets from the posterior
predictive distribution and compare them with the observed data Xy. The results are
provided in Figure 8. We observe that for all methods, the simulated datasets cover the
observed data, with B-GAN-VB providing the best fit.

B-GAN B-GAN-RL

pejosyul

population
2o

-
[0]
Q
o
<
)
@
Q

Figure 8: Simulated datasets under the posterior distributions. The red curves are the
observed data. Each grey line represents one simulated time series of the in-
fected /recovered population.

7 Discussion

This paper proposes strategies for Bayesian simulation using generative networks. We have
formalized several schemes for implicit posterior simulation using GAN conditional density

25

WANG AND ROCKOVA

regression estimators as well as implicit variational Bayes. The common denominator behind
our techniques is (joint) contrastive adversarial learning (Tran et al., 2017; Huszar, 2017).
We have provided firm theoretical support in the form of bounds for the typical total
variation distance between the posterior and its approximation. We have highlighted the
potential of our adversarial samplers on several simulated examples with very encouraging
findings. We hope that our paper will embolden practitioners to implement neural network
posterior samplers in difficult situations when likelihood (and prior) are implicit.

One advantage of using conditional GANSs over other conditional density estimators, such
as the autoregressive flow in Papamakarios et al. (2019), lies in their expressive flexibility
and ability to incorporate statistical structures. While the two methods share a similar pur-
pose, they are fundamentally different. SNL provides a closed-form representation for the
approximated density function, while the generator g(-, X(™) in WGAN is approximating
a pushforward mapping from 7 to the conditional distribution 7(6 | X(™) and no closed-
form of the density function is available. Due to the difference, SNL is more likely to suffer
from the curse of dimensionality due to the invertibility constraint (Papamakarios et al.,
2021). In addition, the invertibility constraint also imposes restrictions on choices of neural
network architecture. In constrast, the generator in our WGAN framework can be designed
to accommodate various structures that exploit the statistical properties of the data. For
instance, in the case of i.i.d. data as discussed in Section 2.5 or partially exchanegable data
as in Luciano et al. (2025), the generator can be designed in a parameter-efficient manner
that exploits the exchangeability of the data, thereby avoiding exploding network complex-
ity as the number of observations increases. Moreover, when the posterior is approximately
Gaussian, the generator can be constructed as two neural networks that separately param-
eterize the posterior mean and variance. More recently, (Baptista et al., 2024) consider the
monotonicity constraint for the generator, which could offer extra inferential benefits with
its connection to the optimal transport map.

Another interesting direction is to extend our approach to the case of mis-specified mod-
els, where the true data is not consistent with the model. Understanding the behavior of the
posterior in such cases is crucial for practical applications. We leave the exploration of this
topic for future work. Some possible directions include incorporating the idea of Bayesian
predictive check (Guttman, 1967; Rubin, 1984) to diagnose the model mis-specification and
estimating the conditional distribution given robust summary statistics.

Acknowledgments

The authors gratefully acknowledge support from the James S. Kemper Research Fund at
the Booth School of Business and the National Science Foundation (DMS: 1944740, DMS:
2515542). This work used the DeltaAl system at the National Center for Supercomput-
ing Applications through allocation MTH250021 from the Advanced Cyberinfrastructure
Coordination Ecosystem: Services & Support (ACCESS) program, which is supported
by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and
#2138296. We also thank the editor and the anonymous reviewers for their constructive
comments and suggestions, which have significantly improved the quality of this paper.

26

GENERATIVE BAYESIAN INFERENCE WITH GANS

References

Ziwen An, David J Nott, and Christopher Drovandi. Robust Bayesian synthetic likelihood
via a semi-parametric approach. Statistics and Computing, 30(3):543-557, 2020.

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations,
volume 9. Cambridge University Press, 1999.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative
adversarial networks. In International Conference on Learning Representations, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International Conference on Machine Learning, pages 214-223. PMLR,
2017.

Susan Athey, Guido W Imbens, Jonas Metzger, and Evan Munro. Using Wasserstein gener-
ative adversarial networks for the design of Monte Carlo simulations. Journal of Econo-
metrics, 2021.

Ricardo Baptista, Bamdad Hosseini, Nikola B Kovachki, and Youssef M Marzouk. Condi-
tional sampling with monotone gans: From generative models to likelihood-free inference.
SIAM/ASA Journal on Uncertainty Quantification, 12(3):868-900, 2024.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin
bounds for neural networks. In Advances in Neural Information Processing Systems,
volume 30, 2017.

Mark A Beaumont. Estimation of population growth or decline in genetically monitored
populations. Genetics, 164(3):1139-1160, 2003.

Mark A Beaumont, Wenyang Zhang, and David J Balding. Approximate Bayesian compu-
tation in population genetics. Genetics, 162(4):2025-2035, 2002.

Mark A Beaumont, Jean-Marie Cornuet, Jean-Michel Marin, and Christian P Robert. Adap-
tive approximate Bayesian computation. Biometrika, 96(4):983-990, 20009.

Espen Bernton, Pierre E Jacob, Mathieu Gerber, and Christian P Robert. Approximate
Bayesian computation with the Wasserstein distance. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 81(2):235-269, 2019.

Steffen Bickel, Michael Briickner, and Tobias Scheffer. Discriminative learning for differing
training and test distributions. In Proceedings of the 24th International Conference on
Machine Learning, pages 81-88, 2007.

Michael GB Blum and Olivier Frangois. Non-linear regression models for approximate
Bayesian computation. Statistics and Computing, 20(1):63-73, 2010.

Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment problems. SIAM,
2009.

27

WANG AND ROCKOVA

Xiaohong Chen and Halbert White. Improved rates and asymptotic normality for non-
parametric neural network estimators. IEEFE Transactions on Information Theory, 45
(2):682-691, 1999.

Kyle Cranmer, Juan Pavez, and Gilles Louppe. Approximating likelihood ratios with cali-
brated discriminative classifiers. arXiv preprint arXiv:1506.02169, 2015.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Ad-
vances in Neural Information Processing Systems, volume 26, 2013.

Conor Durkan, Iain Murray, and George Papamakarios. On contrastive learning for

likelihood-free inference. In International Conference on Machine Learning, pages 2771—
2781. PMLR, 2020.

Matteo Fasiolo, Simon N Wood, Florian Hartig, and Mark V Bravington. An extended
empirical saddlepoint approximation for intractable likelihoods. FElectronic Journal of
Statistics, 12(1):1544-1578, 2018.

Paul Fearnhead and Dennis Prangle. Constructing ABC summary statistics: semi-
automatic ABC. Nature Precedings, pages 1-1, 2011.

David T Frazier, Ryan Kelly, Christopher Drovandi, and David J Warne. The statistical
accuracy of neural posterior and likelihood estimation. arXiv preprint arXiv:2411.12068,
2024.

Jon Gauthier. Conditional generative adversarial nets for convolutional face generation.
Class project for Stanford CS231N: convolutional neural networks for visual recognition,
Winter semester, 2014(5):2, 2014.

Subhashis Ghosal and Aad van der Vaart. Convergence rates of posterior distributions for
noniid observations. The Annals of Statistics, 35(1):192-223, 2007.

Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal
of Physical Chemistry, 81(25):2340-2361, 1977.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, volume 27, 2014.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schélkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723—
773, 2012.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of Wasserstein gans. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Michael U Gutmann and Jukka Corander. Bayesian optimization for likelihood-free infer-
ence of simulator-based statistical models. Journal of Machine Learning Research, 2016.

28

GENERATIVE BAYESIAN INFERENCE WITH GANS

Michael U Gutmann and Aapo Hyvérinen. Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. Journal of Machine
Learning Research, 13(2), 2012.

Michael U Gutmann, Ritabrata Dutta, Samuel Kaski, and Jukka Corander. Likelihood-free
inference via classification. Statistics and Computing, 28(2):411-425, 2018.

Irwin Guttman. The use of the concept of a future observation in goodness-of-fit problems.
Journal of the Royal Statistical Society: Series B (Methodological), 29(1):83-100, 1967.

Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global
optimization. Journal of Machine Learning Research, 13(6), 2012.

Ferenc Huszar. Variational inference using implicit distributions. arXiv preprint
arXiv:1702.08235, 2017.

Marko Jarvenpéad, Michael U Gutmann, Arijus Pleska, Aki Vehtari, and Pekka Marttinen.
Efficient acquisition rules for model-based approximate Bayesian computation. Bayesian
Analysis, 14(2):595-622, 2019.

Marko Jarvenpaa, Aki Vehtari, and Pekka Marttinen. Batch simulations and uncertainty
quantification in Gaussian process surrogate approximate Bayesian computation. In Pro-
ceedings of the 36th Conference on Uncertainty in Artificial Intelligence, volume 124,
pages 779-788. PMLR, 2020.

Tetsuya Kaji and Veronika Rockova. Metropolis-Hastings via classification. Journal of the
American Statistical Association, pages 1-33, 2022.

Olav Kallenberg. Foundations of Modern Probability, volume 2. Springer, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes, 2013.

Tengyuan Liang. How well generative adversarial networks learn distributions. Journal of
Machine Learning Research, 22:1-41, 2021.

Antoine Luciano, Charly Andral, Christian P Robert, and Robin J Ryder. Permutations
accelerate approximate bayesian computation. arXiv preprint arXiv:2507.06037, 2025.

Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Ocal, Marcel Non-
nenmacher, and Jakob H Macke. Flexible statistical inference for mechanistic models
of neural dynamics. In Advances in Neural Information Processing Systems, volume 30,
2017.

Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Karaletsos, and Jakob H Macke.
Likelihood-free inference with emulator networks. In Symposium on Advances in Approx-
imate Bayesian Inference, pages 32-53. PMLR, 2019.

29

WANG AND ROCKOVA

Paul Marjoram, John Molitor, Vincent Plagnol, and Simon Tavaré. Markov chain Monte
Carlo without likelihoods. Proceedings of the National Academy of Sciences, 100(26):
15324-15328, 2003.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational Bayes:
Unifying variational autoencoders and generative adversarial networks. In International
Conference on Machine Learning, pages 2391-2400. PMLR, 2017.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiw:1411.1784, 2014.

George Papamakarios and Iain Murray. Fast e-free inference of simulation models with
Bayesian conditional density estimation. In Advances in Neural Information Processing
Systems, pages 1028-1036, 2016.

George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 837-848. PMLR, 2019.

George Papamakarios, Eric T Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.
Journal of Machine Learning Research, 22(57):1-64, 2021.

Poornima Ramesh, Jan-Matthis Lueckmann, Jan Boelts, Alvaro Tejero-Cantero, David S
Greenberg, Pedro J Gongalves, and Jakob H Macke. GATSBI: Generative adversarial
training for simulation-based inference. In International Conference on Learning Repre-
sentations, 2022.

Donald B Rubin. Bayesianly justifiable and relevant frequency calculations for the applied
statistician. The Annals of Statistics, pages 1151-1172, 1984.

Yunus Saatci and Andrew G Wilson. Bayesian GAN. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLLU
activation function. The Annals of Statistics, 48(4):1875-1897, 2020.

Bodhisattva Sen. A gentle introduction to empirical process theory and applications. Lecture
Notes, Columbia University, 2018.

Scott A Sisson, Yanan Fan, and Mark M Tanaka. Sequential Monte Carlo without likeli-
hoods. Proceedings of the National Academy of Sciences, 104(6):1760-1765, 2007.

Scott A Sisson, Yanan Fan, and Mark A Beaumont. Overview of ABC. In Handbook of
Approzimate Bayesian Computation, pages 3—54. Chapman and Hall/CRC, 2018.

George R Terrell and David W Scott. Variable kernel density estimation. The Annals of
Statistics, pages 1236—1265, 1992.

30

GENERATIVE BAYESIAN INFERENCE WITH GANS

Michalis K Titsias and Francisco Ruiz. Unbiased implicit variational inference. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 167-176. PMLR,
2019.

Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael PH Stumpf. Ap-
proximate Bayesian computation scheme for parameter inference and model selection in
dynamical systems. Journal of the Royal Society Interface, 6(31):187-202, 2009.

Dustin Tran, Rajesh Ranganath, and David Blei. Hierarchical implicit models and
likelihood-free variational inference. In Advances in Neural Information Processing Sys-
tems, volume 30, 2017.

Ramon Van Handel. Probability in high dimension. Technical report, Princeton Univ NJ,
2014.

Yuexi Wang, Tetsuya Kaji, and Veronika Rockova. Approximate Bayesian computation via
classification. The Journal of Machine Learning Research, 23(1):15837-15885, 2022.

Darren J Wilkinson. Stochastic modelling for systems biology. Chapman and Hall/CRC,
2018.

Xingyu Zhou, Yuling Jiao, Jin Liu, and Jian Huang. A deep generative approach to condi-
tional sampling. Journal of the American Statistical Association, pages 1-12, 2022.

31

WANG AND ROCKOVA

Appendix A. Theory for Jensen-Shannon Conditional GANs

Definition 8 (Discriminator) We define a deterministic discriminative model as a map-
ping d : (X x ©) — (0,1) which predicts whether the data pair (X,0) came from w(X,0)
(label 1) or from 7y(X,0) (label 0).

Lemma 9 (Zhou et al., 2022, Lemma 2.1) Let (X,60) be a random pair taking values in
X x © with a joint distribution w(X,0). Then, for any given d, > 1, there exists a random
vector Z ~ iz = N(0,14,) and a Borel-measurable function g* : R x X — © such that Z
is independent of X and (X,0) = (X, 9*(Z, X)) almost surely.

Lemma 10 Consider a minimax game (g*,d*) = arg miél max D(g,d) prescribed by
9€G de

D(ga d) - E(X,G)NW(X,G) IOg d(X7 0) + EXNW(X),ZNWZ log[l - d(X7 g(Z? X)] (22)

Assume that G and D are universal approximators capable of representing any function

g:(Z2xX)—= 0 andd: (X x©) — (0,1), respectively. Then, uniformly on X and ©, the

solution (g*,d*) satisfies
(X, 0)

T (0] X) = (X) =n(0] X) and dy(X,0)=

(X, 0)
(X, 0) +74(X,0)

for any g € G.

Proof The expression for dj (X,) is an immediate consequence of Proposition 1 in Good-
fellow et al. (2014). Plugging-in this expression into (22), we find that

g = argenglin (E(X,e)w(x,e) log dy (X, 0) + Exn(x),zrmy 1081 — dg(X, 9(Z, X))]) ;
g

According to Theorem 1 of Goodfellow et al. (2014), the minimum is achieved if and only
if 7g«(X,0) = 7(X,0) = w(0] X)n(X). The fact that 7(X,) and 74 (X,) have the same
marginal 7(X) implies the expression for 7y« (0] X). []

Appendix B. Proofs from Section 4
B.1 Proof of Theorem 1

Proof We continue denoting X simply by X. Recall the definition of the KL neighbor-
oo By(00;¢) = {0 € © : KL(PY"[|P\") < ne?, Voo (P, Py"”) < ne?}, (23)
where KL(P(,(:)HP@(”)) = Pe(:) log[pgg) / pé”)] and

Vao(PSY, P™) = B [loglp) /pi] — KL(PL |1 PS™) (24)

We define an event, for some fixed C' > 0 and ¢ > 0,

(n)
An(€) = X:/ p?)(X)w(e)de>e—<1+0>"62H[Bn(90;e)] .
Bn(00:€) pg’ (X)

32

GENERATIVE BAYESIAN INFERENCE WITH GANS

We denote with E the expectation with respect to {(6;, X;)]T:1 from the ABC reference
table sampled from the joint 7(¢, X'). For simplicity of notation, we use EET interchangeably

with [E, since it is equivalently accounting for the randomness in BT- Using the fact that
the total variation distance is bounded by 2, we have

P\, iy (v(Xo), g, (X)) = /,4 ()péz)(Xo)EATd%V (v(Xo0), 15, (Xo))dXo (25)
+ 4P LAS (€)]. (26)

According to Lemma 10 in Ghosal and van der Vaart (2007), we have P(n) [AS ()] < ﬁ
Denoting with 7(X) = [, pe ()7 (0)df the marginal likelihood, we can rewrite the term
n (25) as

[L GOm0 (OB, diy (1(X), 15, (X)) dX

where - -
! _/ p?n)(X)w(e)dez/ pfn)(X)w(e)de.
r(X) Py, (X) Bn(6o3€) py.” (X)

On the event A, (¢), we can thus write

e(l—i—C)ne2

") < HB, Gy

Under the assumption (20), the term in (25) can be upper bounded by
) e(1+0+02)n62
m(X)Es, dby (v(X), 15, (X)) dX < ————E [KL(|lug,) + KL(ug,)]
(27)
The inequality above stems from the Pinsker’s inequality (Van Handel, 2014, Theorem 4.8)
and the fact that the joint measures v and 1g, have the same marginal distribution 7(X).

e(1+C+CQ)n62 /
X

In particular, using Fubini’s theorem, we can write

/X T(X)E; dpy (Z/(X), ng, (X)) dx

< L[A0S, (KLl (X)) + KL, (X) (X))}
:411 BT/X /1 ﬂAegf{X)[(9|X)_7TA(’Xﬂd@dX
1

Ej, iy, (v, 1,)-

1
By, [KL(lg,) + KL(ug, |v)] =

=4 br
The above inequality is essential for understanding how the average squared total variation
distance between the posterior and its approximation (with the average taken with respect
to the observed data generating process) can be related to the ‘symmetrized’ KL divergence
dIS(L<V, MET) between the joint distribution and its approximation. We now continue to

33

WANG AND ROCKOVA

bound the symmetrized KL divergence. For simplicity, we denote with B the estimator ,@T
n (17). We have the following decomposition, for any w such that f, € F,

Gnvig) = [7(X) [£.0.X)[m(0] X) = 75(0] X))dodx

m(0] X)
—l—/XW(X)/e [logwa(em—fw(@,X)] (w(0] X) — m5(0| X)]dodX

(0] X)

<dr (1/7 ug) + 2 ||log W

i

- fw(ea X)H
where we have used the inequality [fg < || fllcollg]l1 and the fact that 7 (0| X) and Wa(e | X)

are both non-negative and integrate to one. Then, choosing f, € F that minimizes the
second term we obtain

d%L(VHU’E) < 2A1(‘F7gvé) + d]: (l/?/’LB\) s
where A;(F, G, B) is defined as

(0] X)

Al(F,g,/@) = l]flf WET(9|X)

w:fw€

log

- fw (X7 9) H
o0
and A;(F,G) = E[;.Al (F,G,B) was defined in (18).
We now apply a mild modification of the oracle inequality in (Liang, 2021, Lemma 12).
As long as F and ‘H are symmetric?, then for any 3 such that gg € G we have

d]:(V, /'La) < d]:(lu’B7 V) + Qdf(ﬂTa V) + d]:(.aés‘v Mﬁ) + d?‘l(ﬁ-Ta 7T)’ (28)

where U and ﬁg are the empirical counterparts of v, 13 based on T' iid samples (ABC refer-
ence table {(6;, Xj)}jT:l for v and {(93(Z;, X;), X;)]-Tzl with Z; 1 1 for pa). In addition
7 is the empirical version for the distribution w7 for Z and H = {hw g : hw g(Z,X) =
fw(X,98(Z, X))}. This oracle inequality can be proved analogously as (Liang, 2021, Lemma
12) the only difference being that due to the conditional structure of our GANs the func-
tion class H is not entirely a composition of networks f,, and gg but has a certain nested
structure. Similarly as in (Liang, 2021) (proof of Theorem 13), we can write for any 8 such
that gB € g

dr(pug,v) < B x drv(pg,v) < B dKL(M& v)

< b]

Choosing B that minimizes the expectation on the right side, we obtain dr(ug,v) <
%Az(g), where the term A3(G) was defined in (19). Denote with

Rp(F) = Esup Zaij],H)

2. ie. if f € F then also —f € F

34

GENERATIVE BAYESIAN INFERENCE WITH GANS

the Rademacher complexity with € = (g1,...,er)" iid Rademacher? variables. For the
second term in (28), the symmetrization property (see e.g. Lemma 26 in Liang (2021) or
Theorem 3.17 in Sen (2018)) yields for T' > Pdim(F)

~ Pdi logT
Edr(or,v) < 2E Ry (F) < C x B\/Zm(? o8
for some C' > 0, where Pdim(F) is the pseudo-dimension of the function class F (Defini-
tion 2 in (Bartlett et al., 2017)). The second inequality follows, for example, from Lemma
29 in (Liang, 2021). The bounds on Edy(7r,7), and Ed;(ﬁgw,ug) in (28) are analo-
gous. Putting the pieces together from the oracle inequality in (28) we can upper-bound

Py Bd3y, (v(Xo), pg, (Xo)) with

1 e(1+C+C'2)n62 B " logT . ‘
s+ g 21(F,G) + 5 A2(G) +4C By [= (Pdim(F) v Pdim(H))"/?

which yields the desired statement. |

B.2 Proof of Corollary 4

Proof We continue to use the shorthand notation X for X and B for ,éT- Denote with
7(0) the proposal distribution. Then, the posterior 7(6 | X) under 7(6) satisfies

T(X)

(0)
7(X) 7(6)

and r(0) = 70) (29)

Our reconstruction in Algorithm 2 works by first approximating the joint distribution
(0, X) and then reweighting by the prior ratio, namely

70| X)=m(0|X) x R(X) xr(f), where R(X)=

m5(0] X) =75(0] X) x R(X) x r(0), (30)

where B has been learned by B-GAN (Algorithm 1) by matching the joint 7(6, X) =
7(0| X)7(X) under the prior 7(f). We denote the joint measure with this density by
v. Denote with 1, (X) the approximating conditional measure with a density (30). We
can apply the same steps as in the proof of Theorem 1 until the step in (27). Similarly, we
denote with E the expectation with respect to {(6;, X;) JT:1 from the ABC reference table
sampled from the joint 7(6, X), and we use IEBT interchangeably with E. The next steps
will have minor modifications. Notice that
(0] X) (0] X)

log = log —
50X) B 01X)

3. taking values {—1,+1} with probability 1/2.

35

WANG AND ROCKOVA

and thereby
[OBy (v(X), 15, (X)) dX
_4 1 [ACOB[KLOO I500) + KL (500 Iw(X)]dX

,EA / / lo :Awg"); [7(0] X) — m5(0] X)] doax

0] X) 1. _
=185 [700 [r(0)los =5y [7(01.X) = 7501)] avax

= ZﬁgdﬁL(ﬁ,ﬁg)-

Using similar arguments as in the proof of Theorem 1, we have the following decomposition,
for any w such that f,, € F,

4 7.ig) = [70 [£.(0. X701 X) ~ 75(0] X)lddx

_ (6] X) _ _
+/X7T(X)/® lr(ﬁ) log S fw(e,X)] [7(0] X) — 75(0 | X)]dodX

(0] X)

<dr (ﬂ’ﬁﬁ) +2|r(6) logm —fw(é’,X)H

o0

The rest of the proof is analogous. The only difference is that ﬁ now minimizes the empirical
version of dr (D, ﬁfo’\) under the proposal distribution 7(0).

B.3 Motivation for the Sequential Refinement

Remark 11 (2step Motivation) For the proposal distribution 7(0), using similar argu-
ments as in the proof of Theorem 1, the TV distance of the posterior at Xo (not averaged
over P(n)) can be upper-bounded b

Do pper-bounded by

B ~ _|logT x P B
4 d, (V(Xo)#@(Xo)) < 2A(F,G, Xo) + ﬁAg(g) +4CB\/W+A3(7T)

s the discriminability

where Al(_/—-' g Xo) = SuP,@g G 1nfw wa]: Hlog 9|X0) fwfﬂ?é(;,@)H

m3(0] Xo)
evaluated at Xy (as opposed to (18)) and where

=2 [F0) [IulX0.6) = Lu(X.0)]loe + Bllgg(0)(X) — 95(6) (X0l dX

and gg(&)(X) =70 X)— WE(H\ X). This decomposition reveals how the TV distance can
be related to discriminability around Xo and an average discrepancy between the true and
approximated posterior densities relative to their value at Xo where the average is taken
over the marginal w(X). These averages will be smaller since the marginal 7(X) produces

36

GENERATIVE BAYESIAN INFERENCE WITH GANS

datasets more similar to Xo. For example, an approximation to the the posterior predictive
distribution ©(X) = [pgn) (X)Wg(@ | Xo) where B has been learned by B-GAN (Algorithm
1) is likely to yield datasets similar to Xg, thereby producing a tighter upper bound than a
flat prior.

We provide clarifications of the calculations and reasoning in Remark 11. We assume
that a prior distribution 7(f) has been used in the ABC reference table that yields the

marginal 7(X) = [y pén) (X)7(0)do. Recall the definition of the reweighted posterior recon-
struction in (30) and (29). Denote with

950)(X) =7(0]| X) —7m5(0| X) = R(X) x r(0) x [7(0] X) —75(6 | X)]
the difference between true and approximated posteriors at X, where B has been trained
using the proposal 7(0) and where R(X) = 7(X)/m(X) and r(0) = w(6) /7(0). Using similar
arguments as in the proof of Theorem 1, the squared TV distance of the posterior and its
approximation satisfies, for any element f, € F = {f : ||f|lcc < B},

(0] Xo)
2
ddiy (v(Xo), 15(X0)) /1 WA9|X0 95(0)(X0)d9

_/ [m(0| Xo) fu(Xo,0)
7T’\ (0] Xo) r(0)

] 95(0)(Xo)do0

+ /X f‘”ﬁX %) ~(0)(Xo)dod X

+ [”iif)) [1u(X0,6) = £u(X, 6)1g5(6) (Xo)a00X
<21y o8 o ~ H 7 (775)

+2 [7)ol Xo.0) FulX,)X

G50)X) g5(0)(X0)
R(X)r(0) ~ R(Xo)r(9))),

+2B x /X%(X)

The term dr (17, ﬁl;o;) can be bounded as in the proof of Corollary 4 by

B -~ ~ logT x Pmazx
— 4CB\| ——F——
\/§A2(g> + 7

Compared to Corollary 4, the upper bound on d2, (Z/(Xo), ,ug(Xo)) now involves the dis-
criminability evaluated at X (not averaged over the marginal 7(X)), i.e.

m(0] Xo) fw(XO’e)H'

A1 (F,G,Xp) = sup inf 7500] Xo)

B:gpeG @ fw€F

log

The additional two terms in the upper bound involve integration over 7(X).

37

WANG AND ROCKOVA

B.4 Proof of Corollary 6

With €, = O(1/y/n) we need to verify that for some suitable choice of C;, — oo we have as
n — 0o

Ay(F,G) = o(e™m) (31)
A3(G) = o(e™") (32)
8T [Pdim(F) v Pdim(H)] = o(e~C") (33)

for T that is large enough, i.e. T" > Pdim(F)V Pdim(H). The term A3(G) equals zero from
our assumption of representability of 7(6, X) = Tgs0 (0, X) for gg, € G, which verifies (32).
We assume that X is a stacked vector of n observed vectors of length ¢, not necessarily

iid, and denote d* = d 4+ ngq. Using leaky ReLLU networks and assuming representability, for
(0] X(™)

W 1s continuous

any 3 such that gg € G the log posterior ratio rﬁ(G,X(”)) = log
and, due to boundedness of the network weights, satisfies

0<C<rg6,X™)<C < oo

for any fixed d*. With large enough T and setting £ = [~logT,logT]?" and R = logT,
Lemma 12 yields that there exists a ReLLU network f,, € F with a width

W = 34 max{d*|[NV" |, N + 1}
and depth L = 12logT + 14 4 2d* such that

AL(F,G) < sup inf |lrg(0, X)) —fu, (X, 0)||1 (5) < 19Vd*wF (2(log T)' /4 N=2/47),
B:98€9 w:fw€F
where wf is the modulus of continuity of f(¢) satisfying w]]? (t) = 0ast — 0F. Choosing N

such that 2¢°/2(log T)*" />~ = o(N) as T — oo, the right-hand side above goes to zero for
any fixed d* = d+ngq. For each n, we can find T large enough (depending on the modulus of
continuity) such that A (F, G)eC/d* < n, for some 1, = o(1), yielding (31). The smallest
T that satisfies this will be denoted with T,.

In order to verify (33), Theorem 14.1 in Anthony and Bartlett (1999) and Theorem 6 in
Bartlett et al. (2017) show that for piecewise linear activation functions (including ReL.U
and leaky ReLU) there exist constants ¢, C' > 0 such that

¢ x SLlog(S/L) < Pdim(F) < C x SLlog S,

where F is a class of discriminator networks with L layers and S parameters. Since elements
in H can be regarded as sparse larger neural networks with L+ L* layers, S+ .S* parameters
and piece-wise linear activations, we have

Pdim(F)V Pdim(H) < C x (S + S*)(L + L*)log(S + §*).
Our assumption 7' > Pdim(F) V Pdim(H) will thus be satisfied, for instance, when

T >C x (S+S)(L+ L") log(S + 5%). (34)

38

GENERATIVE BAYESIAN INFERENCE WITH GANS

Choosing N = [2¢"/2(log T)*" /2|, which satisfies the requirement 2¢"/2(log T)?" /21 = o(N)
as T — oo, yields

W =34 max{d*|[NV" |, N +1} = 3743|292 (1og T)¥" /2 1| (35)

for a sufficiently large n (and thereby d*). Recall that in the feed-forward neural networks,
the total number of parameters S = 1! [w;(w; + 1)] satisfies S < LW (W + 1). For any
fixed d* (and thereby n), assuming L = 12log T + 14 + 2d* as before and W as in (35), we
define T'(d*) as the smallest T' that satisfies

C X [LW(W +1) + S*|(L + L) log[LW(W + 1) 4+ 5] < logT x e 2 x

for some 1, = o(1). Any T > T'(d*) satisfies T' > Pdim/(F)VPdim(H) and eQC"%[Pdim(}")\/
Pdim(H)] < np. With T' > max{T,,T(d*)}, the condition (33) is verified.

Lemma 12 (Zhou et al., 2022, Lemma B5) Let f be a uniformly continuous function
defined on E C [~R,R]?. For any L, N € N*, there exists a ReLU network function fo
with width 343 max{d|N'V/¢|, N 4+ 1} and depth 12L + 14 + 2d such that

I1f = foll o (s < 19VdwF (2RN-2/4L72/4),
where wf(t) is the modulus of continuity of f(t) satisfying w?(t) —0ast— 0t

B.5 Theory for Adversarial Variational Bayes

Theorem 2 Let 31 be as in (36) where F = {f : ||f|loc < B} for some B > 0. Denote
with E the expectation with respect to {Zj};rzl in the reference table. Assume that the prior
satisfies (20). Then for T > Pdim(F o G) we have for any Cp, > 0

FYVEdy, (v(Xo). 15, (X0)) < DI(F,G,en, Cn).

where

As(F,G) 1 1
T _ 3) =+
Dy (F.G,6n,Cn) = =5 +C’%n5%+2c

_ logT . e(l—Q—CQ-&-C'n)na% B
Pdim(Fog)+S— "5
\/ im(F o G) I 7

for some C > 0 where Ay(G) was defined in (19) and where

w5 (6] Xo)

_ pm)
AS(]:’ g) - PQO]E||10g 7T(9|X0)

~ o Ko 9)H

o0

Here E account for the nested randomness in the estimation process of w(,éT) and ,éT.

Proof We denote with E the expectation with respect to the empirical distribution. Because
the class F is symmetrical (i.e. f € F implies —f € F), the adversarial variational Bayes
estimator is defined as

Br = arg_min [Ezwwsz(ﬁ) (X0,98(Z, X0)) = Epr(o| x0) fur(8) (X0, 9)} (36)
B:gpeg

39

WANG AND ROCKOVA

where

w(B) = arg max | By, xn(x)foo (X,98(2, X)) = Big.x)m(o.) (X, 0)]
Note that the (stochastic) gradient descent update for 3, conditioning on the most recent
value of w, does not involve the second term Eg. 4| x,)fuw(g) (€, Xo) in (36) because it
does not depend on B. The minimization occurs only over the first term. We obtain
theoretical results for ,éT and note that our Algorithm 3 targets this estimator. In the
sequel, we denote Bz simply by 3 and use the notation m8(0,X) = ma(0| X)m(X) for the
joint generator model. Using the Pinsker inequality we obtain

n (0] X
Py)E4dTV< (Xo), Mﬁ(Xo)) <P(E/ lo WAQ"XOO))[W(MXO) —75(6| Xo)]do
01 Xo)
(n) 5(_f A
SPQO E2 1Og 7_(_(0 | XO) fw(ﬂ) (XOa H)Hoo

PV Ed5(v5(Xo), n(Xo)),
where we define (for any 3, 3 such that g3 € G and 95 € g)

d5(vp(X), (X)) = Egang0) x)f 5 (X5 0) = Eonno) x)f 3 (X 0)-

From the definition of (36) and since F o G is symmetrical, we have for any realization X
and for any 3

d5(v5(Xo), m(Xo)) = dz(v5(Xo), v5(Xo)) + d5(v5(Xo), n(Xo))

Xo),v5(Xo0)) + d(p(Xo), 1(Xo)) (37)
< d]—‘(VE(XO)a v5(X0)) + da(g(Xo), va(Xo)) + d(vp(Xo), u(Xo))
7z) + dp(vp(Xo), 1(Xo))-

Next, using the same arguments as in the proof of Theorem 1, we obtain
n n c n ne2
PAEdp(vp(Xo), 1(X0)) < 4BG) LG (0] + eFOHIE | dp(up(X), u(X0))m(X)dX
Since || fu(@)lloo < B, we have for any 3

Exdp(up(X).v(X)) = [7(X) [fu(X.0)[x(0] X) = n(0] X))dodX
< B x Exdry(pg(X),v(X))

(0] X)
<“M me

In the sequel, we choose B which minimizes this term. Next, using the symmetrization
techniques as before in the proof of Theorem 1 and denoting with E the expectation with

40

GENERATIVE BAYESIAN INFERENCE WITH GANS

respect to {Zj}szl, we have

loiT Pdim(F o G).

drog(m2,772) < ERp(FoG) < 5'\/
Putting the pieces together, we obtain an upper bound DI (F, G, e,,C,,) for PQ(S)E d2y, (V(Xo), 15, (Xo)).

Appendix C. More on Adversarial Variational Bayes

The VB algorithm reported in the main paper follows the scheme in Algorithm 3. Figure 9
includes an example of performance of Algorithm 3 on another realization of Example 1.

h
‘.
!
‘.

\ 2 /100
~ 4 \.; ' / A
<" - P 4] - N

-2 -1 0 1 2 -4 -3 -2 -1 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

"] B-GaN-vB [] B-GAN-25 [Truth _ | SNL

)
[}
[}
S e o .

Figure 9: Posterior densities under the Gaussian model (another repetition). The true
parameter is 6y = (—0.7,—2.9, —1.0,—0.9,0.6)’, while the signs of 5 and 6, are
not identifiable.

Appendix D. Jensen-Shannon Version of B-GAN

The empirical version of the minimax game using (22) involves the ABC reference table

{05, Xj)}JT:1 and noise realizations {Zj}};l ~ mz(+) to solve

T T
(9", d") = argmin max (E log d(X;,0;) + > log |1~ d(Xj,g(Zjo))}) : (38)
g - :
J=1 J=1

The convergence difficulties of Jensen-Shannon (JS) GANs (Goodfellow et al., 2014),
similar to Algorithm 4, have been no secret. We provide a simple illustration of how it
can fail on the toy example in Example 1. In particular, we show that the convergence is
very sensitive to the choice of the learning rate (step size in stochastic gradient descent).
To make comparisons with the Wasserstein version more fair, we use the same network
architecture used for Algorithm 1 described in Section E.2 for the JS version as well. At
the end of this section we point out that JS can work with more careful tuning at higher
computational cost.

41

WANG AND ROCKOVA

Algorithm 4 B-GAN (Jensen-Shannon Version)

Prior 7(6), observed data X, and noise distribution mz(-)

Initialize networks d®) and ¢(©)
ABC Reference Table
For j =1,...,T: Generate (X;, ;) where 6; ~ w(¢) and X; ~ Pe(:l).
GAN Training '
Fort=1,...,N:
Generate noise Z; ~ mz(z) for j =1,...,T.
Update d® and ¢(*) using stochastic gradient descent applied to (38).

Fori=1,...,M: Simulate Z; ~ 75 (z) and set 6; = g(N)(Zi,X(()"))

One of the most common causes of failure is an overly-powerful discriminator. Because
of the ‘log loss’, when the discriminator learns too fast and becomes too strong, the ‘close-
to-boundary’ predictions (near 0 for fake data or near 1 for real data) cause vanishing
gradients for the generator. We show how the training balance (between the generator and
the discriminator) can be easily disturbed when we alter the learning rate of the generator.
We consider two scenarios where the noise variables {Z;}1_; are (a) refreshed for each
stochastic gradient step, and (b) when they are sampled only once ahead of time and then
random minibatches selected for each stochastic gradient steps. In Figure 10, we report
the four approximated posteriors for these two scenarios considering two learning rates of
the generator (weak Iry, = 10~ versus strong Ir, = 1073) while keeping the learning rate
of the discriminator at 10~*. When the generator is weak compared to the discriminator
(Ir, = 107%), the posterior reconstructions are not quite around the true values (bottom
figure). When the generator is stronger (Ir, = 107), the posteriors at least cover the correct
locations of the parameters, but they are not nearly as successful as the Wasserstein B-GAN
reconstructions we have seen in Figure 1. It is also interesting to compare the results for
the two treatments of the noise Z. Sampling Z’s ahead of time and then sub-sampling for
stochastic gradient yields less satisfactory reconstructions.

The JS version of B-GAN could work with a more delicate calibration and exten-
sive training. The Gaussian example was also studied in Ramesh et al. (2022, Section
3.1), who constructed much bigger and deeper networks for both the discriminator and
generator. They used a 4-layer network for the generator, with layer widths equal to
(dx + dz,128,128,128,128,dy), and a 5-layer network for the discriminator, with layer
widths (dx + dp, 2048, 2048, 2048, 2048, 2048, 1). They used leaky ReLU activations with a
0.1 negative slope. Using 100000 pairs of (X;,0;) (twice as many compared to what we
used), the networks were trained for 20 000 epochs with 100 discriminator updates per each
generator update. Spectral normalization is also applied to ensure stable training. Yet,
the authors observed that the performance on the Gaussian example is inferior to SNL
(Figure 2A in their paper). Our Wasserstein B-GAN implementation could outperform
SNL with much simpler networks, smaller ABC reference table and significantly lower opti-

42

GENERATIVE BAYESIAN INFERENCE WITH GANS

0.6 0.9 0.6
0.4

0.4 06 0.4

0.2
0.5
0.2 0.3 _// 0.2 Lj ﬁ//
0.0 -J 0.0 X— 0.0 — 0.0 - 0.0 -
2 o 2 5.0 25 0.0 25 4 2 o 2 4 6 2 o 2 4 5.0 2.5 0.0 25

random |_| shuffle

-3
(a) Iry =10
1.25
1.5 2.0
1.00 0.75
15 1.0
0.75 o
0.50
1.0
0.50
05 0.5
0.25 0.5
; L
0.00 0.0 J\V; 0.00 4 0.0 ———— | 00| +H
-8 -4 o 15 -10 5 o 4 0o 1 2 3 a4 o 2 4 6 o 5 10

random [] shuffle

(b) Iry =107

Figure 10: Approximated posteriors under different generator learning rates and different Z randomiza-
tions. The learning rate of the discriminator is fixed at 10~ in both. The blue vertical lines
mark the correct locations of the parameters.

mization costs. We explored other structures, which are different from the ones mentioned
above and simpler than the ones used by the authors. For example, a generator network
with input-output dimensionality as (dx +dz, 128,128,128, dp) and a discriminator network
with input-output dimensionality as (dx + dg,512,512,512,512,1). However, they did not
produce satisfactory posterior approximations.

Appendix E. Implementation
E.1 Implementation details of the one-sided gradient penalty

For the Lipschitz constraint in (5), to avoid the ad hoc gradient clipping in Arjovsky and
Bottou (2017), Gulrajani et al. (2017) proposed the soft constraint with a penalty on the
gradient of f,, with respect to a convex combination of the two constrasting datasets. They
adopt the two-sided penalty encouraging the norm of the gradient to go towards 1 instead
of just staying below 1 (one-sided penalty). This is inspired by the fact that the optimal
critic function contains straight lines with gradient norm 1 connecting coupled points from
the contrasted distributions (Gulrajani et al., 2017, Propositionl). Similarly as Athey et al.
(2021), we adopt the one-sided penalty only with respect to 6;

)\{% XT: [Inax (0,

Jj=1

Va0, - 1))} (39)

43

WANG AND ROCKOVA

where 0; = €;0; + (1 —¢;)g(Z;, X;) with the ¢; re-drawn from a uniform distribution at each
step. The choice of A is discussed in Section E.

E.2 Implementation Details for the Gaussian Example

0, =0.7 0y = —2.9 03] = 1.0 104] = 0.9 05 = 0.6
bias CI width bias CI width bias CI width bias CI width bias CI width
Truth | 0.63 150 (0.8) 039 1.04 (0.9) 0.37 285 027 239 083 1.68(0.8)
SNL 0.73 3.50 0.49 2.38 0.40 4.11 0.28 3.47 0.88 3.33
SS 1.25 5.35 1.48 6.53 0.83 5.66 0.86 5.67 1.56 5.69
W2 1.14 3.74 0.98 3.29 (0.9) 0.46 4.20 0.45 3.70 1.36 5.52

ReLU activations
B-GAN 0.69 2.89 0.43 2.08 0.37 3.54 0.29 3.12 0.87 2.38 (0.8)

Architecture (128,128, 128)

B-GAN-2S | 0.57 1.86(0.8) 0.32 1.15(09) 0.31 291 (0.9) 0.23 242(0.9) 0.84 2.16 (0.8)
Architecture (256, 256)

B-GAN-2S | 0.57 1.73 (0.8) 0.32 1.18(0.9) 0.28 2.76 (0.8) 0.20 2.30 (0.9) 0.73 1.79 (0.8)

Leaky ReLU activations
B-GAN 0.64 2.74 0.39 1.92 0.35 3.53 0.26 3.04 0.86 2.28 (0.8)
B-GAN-2S | 0.53 1.77 (0.8) 0.30 1.12 (0.9) 0.33 2.98 0.27 2.52 0.83 2.12 (0.9)

Table 4: Summary statistics of the approximated posteriors under the Gaussian model (averaged over 10
repetitions). For 03 and 64, we compute the statistics using the absolute values of the parameters,
since the posteriors have symmetric modes. Truth refers to the posterior calculated from the exact
likelihood function. Bold fonts mark the best model of each column (excluding the true posterior).
The coverage of the intervals are 1 unless otherwise stated in the parenthese.

Network Architectures. Our implementation of Algorithm 1 in python builds on the
codes provided by (Athey et al., 2021).* We use fairly modest generator/critic networks.
For the generator network, we use only 3 hidden layers totaling in dimensions (dz +
dx, 128,128,128, dy). For the critic network, we use a similar architecture with layer dimen-
sions equal to (dp + dx,128,128,128,1). A small amount of regularization (dropout = 0.1
for each layer) was applied to avoid over-fitting. All the weights are initialized at 0 and the
mz(+) is specified as the mean zero Gaussian with identity covariance matrix, dimension dz
equal to dy.

For the post-processing enhancements in Algorithm 2 and Algorithm 3, we choose shal-
lower but wider networks with the hope that they will better capture local aspects (Chen
and White, 1999). In particular, for both the generator and critic networks, we use only
two-layer networks, resulting in layer dimensions (dz + dx, 256,256, dy) for the generator
and (dy + dx,256,256,1) for the critic. We summarize comparisons of this setting with
the previous 3 layers of 128 units for B-GAN-2S in Table 4. From the results, we see that
wider and shallower networks are superior to the deeper and narrower ones for the two local
refinements. We have thereby reported posteriors with two layers of 256 units networks
in the main paper. In terms of activation functions, our previous analyses are conducted
with a ReLU activation, given its expressibility and inherent sparsity (Goodfellow et al.,

4. https://github.com/evanmunro/dswgan-paper

44

GENERATIVE BAYESIAN INFERENCE WITH GANS

2016). We have also considered the leaky ReLU with a negative slope a = 0.1 (see Table 4)
and found no significant advantage of one versus the other. We report results for ReLUs in
Figure 1.

Hyperparameters. Regarding the choice of T', for our ABC methods (with summary
statistics and the Wasserstein distance), we use a reference table of size 7' = 100000. We
construct approximated posteriors using the top 1% draws with the smallest ABC discrep-
ancies. For Algorithm 1, we use the same reference table. However, for the stochastic
gradient descent updates we use a batchsize T' = 6400 (implementations in (Ramesh et al.,
2022) suggest a batch size around 10% of the total sample size T'). The data pairs (X;,6;)
are thus subsetted with replacement (not re-sampled) for each iteration of the stochastic
gradient descent. The noise variables Z;’s, however, are refreshed (not pre-sampled and sub-
setted) for each batch. This is commonly used in existing GAN implementations, including
(Athey et al., 2021).

We set neritic = 15, A = 5, and the learning rate for the two networks as Iry = Ir. = 10*4,
which are used in both (Gulrajani et al., 2017) and (Athey et al., 2021). For optimization,
we use the ADAptive Moment estimation algorithm (ADAM) by (Kingma and Ba, 2014).
We train B-GAN for N = 1000 epochs or until convergence (the test loss stops decreasing).

For Algorithm 2 and 3, we use smaller reference tables (I" = 50 000) with a smaller batch-
size 1280, again training the networks for NV = 1000 epochs. We increase the neritic and the
penalty A with the hope that a regularized and stabilized critic could help the generator
to learn better in the local region. In general, a well-behaved critic network always helps
but the extra training costs could be high when the sample size is large. Since these local
enhancement variants are trained on a smaller reference table, we make these alterations so
that they can converge faster with only a minor increase in computation costs. In addition,
unlike the JS version of GAN as described in Algorithm 4, the Wasserstein version is less
sensitive to the choice of hyper-parameters. Essentially, different hyper-parameters yield
similar results and only lead to a trade-off between the convergence speed and computation
costs.

Details of Other Methods. For the SNL model (Papamakarios et al., 2019), we adopt
the configurations suggested by the authors.” They generated 1000 pairs of (6}, X;) in each
round, with 5% randomly selected to be used as a validation set. They stopped training if
the validation log likelihood did not improve after 20 epochs. They suggested 40 rounds for
the Gaussian model. Each Masked Autoregressive Flow (MAF) network has two layers of
50 hidden units with hyperbolic tangent function (tanh) activations.

For ABC methods, we use the mean and variance as summary statistics for naive ABC
(SS) and the Wasserstein version is implemented using the 2-Wasserstein (W2) distance un-
der the Euclidean metric defined as W2(X;, X;) = miny, [37, —1 37 _1 Verks 1 Xik — Xjpl®
st v'1, = 1,,71, = 1, with 0 < 44,%, < 1. Note that when we calculate the 2-Wasserstein
distance, each X is treated as 4 pairs (n = 4) of bi-variate normal variables rather than
a flat vector of length 8. For both methods, the approximated posteriors are constructed
using the ABC draws with the top 1% smallest data discrepancies. Performance details
(after 10 repetitions) are summarized in Table 4.

5. The authors provide their implementations on https://github.com/gpapamak/snl

45

[E—

1/2

WANG AND ROCKOVA

E.3 Implementation Details for the I.I.D. M/G/1-Queuing Model

For the M/G/1-queuing example, we generate ABC reference table of size T'= 100000 in
all three examples. For the stacking and deep set structure, the entire table is generated
upfront as {(Gi,Xi("))}. For the stacking implementation, XZ-(n) is flatten as a long ten-
sor of shape (1,n), while the deep set structure takes a three-dimensional tensor of shape

(1,n*,5). For the sequential update implementation, we generate new ABC reference ta-

ble with 7" = 100000 as {92-,X?/5} (we use 5 batch update) with 6; generated from the
posterior distribution learned from last iteration and each dataset only contains n*/5 i.i.d.
observations and is flatten of shape (1,n/5).

For our deep set architecture for learning the conditional distribution on i.i.d. datasets,
it is structured as

95(Z,1X1, Xo, .., X)) = 9523 922, X))
=1

fw(97 [X17X27'-'a n = 9 Z (2) 9 X

UJI

(1)

where 9, > gﬁ2 s fon) f},ﬁ) are sub-network structures inside the generator and critic functions.

(2)

For the M/G/1-queuing example, we use the same deep set structure for 95, and fcg) as
ReLU networks with 1 hidden layers with 64 units. We use 2 hidden layers with (64, 64)
units for ggl) and 1 hidden layer with 64 units for f&) We set Ir, = le~? and Ir, = le™4,
and train for 2000 epoches with batch size of 1 280.

For the sequential implementation, we use 3 hidden ReLU layers of (128,128, 128) units
for both the generator and the critic functions. We set Iry, = 5¢~% and Ir, = le™* and train
the networks with batch size of 1280. We train the network for 1000 epoches for the first
batch and 500 epoches for the remaining batches.

For the stacked implementation, we use 3 hidden ReLU layers of (128,128,128) units
for both the generator and the critic functions. We set Iry = 5¢~* and Ir, = le~* and train
the networks for 2000 epoches with batch size of 1280.

E.4 Implementation Details for the Lotka-Volterra Example

For the Lotka-Volterra example, we adopt the 9-dimensional summary statistics used in
Papamakarios and Murray (2016). For Algorithm 1, we use ReLU neural networks with
L —1 = 3 hidden layers with (128,128, 128) units from bottom to top for both the generator
and the critic functions. We generate "= 1000 000 pairs of (X;, 6;) for the vanilla B-GAN,
and the networks are trained with a batch size B = 1280 for 1000 epochs. We adopt the
same Neritics A, Ity = Ir. as the Gaussian example in Section E.2.

For learning from the adjusted prior 7(0) = m5(6| Xo) where g was obtained from
Algorithm 1, we choose shallower networks with L — 1 = 2 hidden layers and W = 256
hidden units in each layer. We generate 7" = 50000 samples for local enhancements and
use a batch size B = 1280 and 1000 epochs for training. For the VB variant (B-GAN-
VB in Algorithm 3), we use the same network architecture and training configuration as
B-GAN-RL. We set the weights of the VB loss to be 0.2.

46

GENERATIVE BAYESIAN INFERENCE WITH GANS

For the two ABC methods, we use the same 7" = 1000000 pairs used in the B-GAN
training. We adopt the summary statistics described in Section 5.1 for the naive ABC
(SS) and Wasserstein version is calculated on top of the pairs of predator-prey population
{z¢,y:}. For both models, we again accept ABC draws with the top 1% smallest data
discrepancies.

For the SNL model, the author suggested building the network on top of the same set of
summary statistics used in naive ABC, and 20 epochs of training. The network architecture
and other training configuration remain the same as in Section E.2.

E.5 Implementation Details for the Boom-and-Bust Example

We generate T' = 500 000 pairs of (X, 6;) for training the vanilla B-GAN in Algorithm 1. We
use the same batch size, learning rate and network architectures as in Section E.2, except
that we train the networks for 2000 epochs this time. We have explored three types of
different inputs: (1) the time-series itself; (2) the summary statistics suggested by previous
literature such as (An et al., 2020) (described in Section 5.2); (3) the time-series together
with the summary statistics. We find the one built on only the summary statistics works
best.

For this example, we find that this model is more challenging than the Lotka-Volterra
example and the vanilla posterior does not always learn the correct location of 6y. Directly
using the B-GAN posterior results in poor training samples for both the 2-step refinement
and the VB implementation. To improve the robustness of our methods in repeated ex-
periments, we have revised the proposal distribution in the second step to be a mixture of
50% prior and 50% posterior from the vanilla B-GAN. This ensures that we can be guided
towards the area closer to the true values 6y while guarantees that 6y is absolutely covered
by the proposal distribution.

For the local enhancement variants, B-GAN-2S in Algorithm 2 and B-GAN-VB in Al-
gorithm 3, we generate T' = 50000 samples. The network architectures and training con-
figurations are the same as the ones in Section E.2.

For ABC methods, they are built on the same T' = 500000 draws used in B-GAN. We
adopt the summary statistics mentioned in Section 5.2 for the naive ABC (SS), and the
2-Wasserstein ABC is trained on the time series.

For SNL models, we use the summary statistics as the input to the networks and train
the model for 20 epochs, similar to the setting used in Section E.4.

E.6 Implementation Details for the Common Cold example

We generate 7" = 500000 pairs of (X;,6;) for training the vanilla B-GAN in Algorithm 1.
We use the same batch size, learning rate as in Section E.2. We use ReLLU networks with
L — 1 = 2 hidden layers with (128, 128) units from bottom to top for both the generator
and the critic functions.

For B-GAN-RL and B-GAN-VB, we generate T" = 50000 samples from the B-GAN
posterior.The network architectures and training configurations are the same as B-GAN.

47

WANG AND ROCKOVA

E.7 Computation Costs Comparison

We provide comparisons of computation times of each method in Table 5 for the Gaussian
example and the Lotka-Volterra model. Note that SS, W2 and SNL were executed with
CPUs and all B-GAN models were computed using GPUs. We report the time of B-GAN-
2S and B-GAN-VB for computation using the adjusted prior only (i.e. without the pilot
run). Since B-GAN model learns the joint distribution of (X, #) and is universal regardless
of the observed data Xy, we recycle the same pre-trained B-GAN model to recover the
adjusted prior repeatedly for different Xy in our simulation study. Although we only report
the computation time for one repetition here, this feature saves a lot of computation costs
when one wants to investigate average performance from multiple repetitions.

The complexity of computing the exact Wasserstein distance is O(T3) (Burkard et al.,
2009) and O(T?) (Cuturi, 2013) for the approximate one. The computation costs of SNL
and B-GAN depends on the network architecture and how fast the networks converge. We
can only give a rough computation complexity estimate as O(T X #epochs x #weights) for
these neural network based models. From Table 5, we observe that our methods could be
more scalable than W2 and SS when the dimension of the dataset is high (8 of Gaussian
model vs 402 of Lotka-Volterra (LV) model). The computation time of SNL on LV is
smaller than for the Gaussian model due to fewer epochs in training (the author suggested
20 rounds for LV and 40 rounds for Gaussian model). In addition, SNL is trained on
summary statistics (¢ = 9) rather than the time-series for the LV model. The computation
costs of SS increase significantly on the LV example, resulting from both the increase in
dimension and the computation costs of the selected summary statistics. The computation
costs of the Wasserstein distance are unsurprisingly high as it is known that they do not
scale well.

| SS W2 SNL B-GAN B-GAN-2S B-GAN-VB
Gauss 33.75 221.28 4790.56 2736.93 676.25 726.22
Lotka-Volterra | 5846.95 162644.96 3080.96 1610.05 762.21 753.61

Table 5: Computation time of one repetition for each method on Gauss example and Lotka-Volterra (LV)
example (in seconds). The time of B-GAN-2S and B-GAN-VB is for computation using the
adjusted prior.

48

	ABC and Beyond
	Adversarial Bayes
	Vanilla GANs
	Conditional GANs for Bayes
	Generative Bayesian Inference with GANs
	Two-step Refinement
	The Case of i.i.d. Observations

	GAN Variational Bayes
	Theory
	Performance Evaluation
	Lotka-Volterra Model
	Simple Recruitment, Boom and Bust

	Empirical Analysis: the Susceptible-Infected-Recovered (SIR) epidemic model with application to the common cold data
	Discussion
	Theory for Jensen-Shannon Conditional GANs
	Proofs from sec:theory
	Proof of thm:bound
	Proof of Corollary 4
	Motivation for the Sequential Refinement
	Proof of Corollary 6
	Theory for Adversarial Variational Bayes

	More on Adversarial Variational Bayes
	Jensen-Shannon Version of B-GAN
	Implementation
	Implementation details of the one-sided gradient penalty
	Implementation Details for the Gaussian Example
	Implementation Details for the I.I.D. M/G/1-Queuing Model
	Implementation Details for the Lotka-Volterra Example
	Implementation Details for the Boom-and-Bust Example
	Implementation Details for the Common Cold example
	Computation Costs Comparison

